130 resultados para Fluid-Structure Interaction


Relevância:

40.00% 40.00%

Publicador:

Resumo:

An Nd:glass laser pulse (18 ns, 1.38 J) is focused in a tiny area of about 100-mum diam under ambient conditions to produce micro-shock waves. The laser is focused above a planar surface with a typical standoff distance of about 4 mm, The laser energy is focused inside a supersonic circular jet of carbon dioxide gas produced by a nozzle with internal diameter of 2.9 mm and external diameter of 8 mm, Nominal value of the Mach number of the jet is around 2 with the corresponding pressure ratio of 7.5 (stagnation pressure/static pressure at the exit of the nozzle), The interaction process of the micro-shock wave generated inside the supersonic jet with the plane wall is investigated using double-pulse holographic interferometry. A strong surface vortex field with subsequent generation of a side jet propagating outward along the plane wail is observed. The interaction of the micro-shock wave with the cellular structure of the supersonic jet does not seem to influence the near surface features of the flowfield. The development of the coherent structures near the nozzle exit due to the upstream propagation of pressure waves seems to be affected by the outward propagating micro-shock wave. Mach reflection is observed when the micro-shock wave interacts with the plane wall at a standoff distance of 4 mm, The Mach stem is slightly deflected, indicating strong boundary-layer and viscous effects near the wall. The interaction process is also simulated numerically using an axisymmetric transient laminar Navier-Stokes solver. Qualitative agreement between experimental and numerical results is good.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The vibration analysis of an elastic container with partially filled fluid was investigated in this paper. The container is made of a thin cylinder and two circular plates at the ends. The axis of the cylinder is in the horizontal direction. It is difficult to solve this problem because the complex system is not axially symmetric. The equations of motion for this system were derived. An incompressible and ideal fluid model is used in the present work. Solutions of the equations were obtained by the generalized variational method. The solution was expressed in a series of normalized generalized Fourier's functions. This series converged rapidly, and so its approximate solution was obtained with high precision. The agreement of the calculated values with the experimental result is good. It should be mentioned that with our method, the computer time is less than that with the finite-element method.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The hierarchial structure and mathematical property of the simplified Navier-Stokesequations (SNSE) are studied for viscous flow over a sphere and a jet of compressible flu-id. All kinds of the hierarchial SNSE can be divided into three types according to theirmathematical property and also into five groups according to their physical content. Amultilayers structure model for viscous shear flow with a main stream direction is pre-sented. For the example of viscous incompressible flow over a flat plate there existthree layers for both the separated flow and the attached flow; the character of thetransition from the three layers of attached flow to those of separated flow is elucidated.A concept of transition layer being situated between the viscous layer and inviscidlayer is introduced. The transition layer features the interaction between viscous flow andinviscid flow. The inner-outer-layers-matched SNSE proposed by the present author inthe past is developed into the layers matched (LsM)-SNSE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper deals with the interaction of solitary waves in a two-fluid system which consistsof two superimposed incompressible inviscid fluids with a free surface and a horizontal rigidbottom. Under the assumption of shallow water wave, we first derive the basic equationssuitable for the model considered, a generalized form of the Boussinesq equations, then usingthe PLK method and the reductive perturbation method, obtain the second-order approximatesolution for the head-on collision between two pairs of interface and surface solitary waves,and give their maximum amplitudes during the collision and the nonuniform phase shiftsafter the collision which lead to the distortion of the wave profiles.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A Nonlinear Fluid Damping (NFD) in the form of the square-velocity is applied in the response analysis of Vortex-induced Vibrations (VIV). Its nonlinear hydrodynamic effects oil the coupled wake and structure oscillators are investigated. A comparison between the coupled systems with the linear and nonlinear fluid dampings and experiments shows that the NFD model can well describe response characteristics, such as the amplification of body displacement at lock-in and frequency lock-ill, both at high and low mass ratios. Particularly, the predicted peak amplitude of the body in the Griffin plot is ill good agreement with experimental data and empirical equation, indicating the significant effect of the NFD on the structure motion.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The modulation of superlattice band structure via periodic delta-doping in both well and barrier layers have been theoretically investigated, and the importance of interaction between the delta-function potentials in the well layers and those in the barrier layers on SL band structure have been revealed. It is pointed out that the energy dispersion relation Eq. (3) given in [G. Ihm, S.K. Noh, J.I. Lee, J.-S. Hwang, T.W. Kim, Phys. Rev. B 44 (1991) 6266] is an incomplete one, as the interaction between periodic delta-doping in both well and barrier layers had been overlooked. Finally, we have shown numerically that the electron states of a GaAs/Ga0.7Al0.3As superlattice can be altered more efficiently by intelligent tuning the two delta-doping's positions and heights. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the fluid simulation, the fluids and their surroundings may greatly change properties such as shape and temperature simultaneously, and different surroundings would characterize different interactions, which would change the shape and motion of the fluids in different ways. On the other hand, interactions among fluid mixtures of different kinds would generate more comprehensive behavior. To investigate the interaction behavior in physically based simulation of fluids, it is of importance to build physically correct models to represent the varying interactions between fluids and the environments, as well as interactions among the mixtures. In this paper, we will make a simple review of the interactions, and focus on those most interesting to us, and model them with various physical solutions. In particular, more detail will be given on the simulation of miscible and immiscible binary mixtures. In some of the methods, it is advantageous to be taken with the graphics processing unit (GPU) to achieve real-time computation for middle-scale simulation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The linear water wave scattering and radiation by an array of infinitely long horizontal circular cylinders in a two-layer fluid of infinite depth is investigated by use of the multipole expansion method. The diffracted and radiated potentials are expressed as a linear combination of infinite multipoles placed at the centre of each cylinder with unknown coefficients to be determined by the cylinder boundary conditions. Analytical expressions for wave forces, hydrodynamic coefficients, reflection and transmission coefficients and energies are derived. Comparisons are made between the present analytical results and those obtained by the boundary element method, and some examples are presented to illustrate the hydrodynamic behavior of multiple horizontal circular cylinders in a two-layer fluid. It is found that for two submerged circular cylinders the influence of the fluid density ratio on internal-mode wave forces is more appreciable than surface-mode wave forces, and the periodic oscillations of hydrodynamic results occur with the increase of the distance between two cylinders; for four submerged circular cylinders the influence of adding two cylinders on the wave forces of the former cylinders is small in low and high wave frequencies, but the influence is appreciable in intermediate wave frequencies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new photoluminescent heterobimetallic Zn(II)-Ag(I) cyano-bridged coordination polymer, [Ag5Zn2(tren)(2)(CN)(9)] (tren = tris(2-aminoethyl)amine) (1), has been synthesized and structurally characterized. It features rare linear pentameric unit of dicyanoargentate(I) ions assembled by d(10)-d(10) interaction as building blocks. Solid state emission spectrum of I shows strong ultraviolet luminescence with emission peak in the range of 376 nm.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

By fitting the spinodals of poly(vinyl methyl ether)/deuterated polystyrene (PVME/PSD) systems, the adjustable parameters epsilon (12)* and delta epsilon* in the Sanchez-Balasz lattice fluid (SBLF) theory could be determined for different molecular weights. According to these parameters, Flory-Huggins and scattering interaction parameters were calculated for PVME/PSD with different molecular weights by means of the SELF theory. From our calculation, Flory-Huggins and scattering interaction parameters are both Linearly dependent on the reciprocal of the temperature, and almost linearly on the concentration of PSD. Compared with the scattering interaction parameters, the Flory-Huggins interaction parameters decreased more slowly with an increase in the concentration for all three series of blends.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experiments were performed, in a terrestrial environment, to study the migration and interaction of two drops with different diameters in matrix liquid under temperature gradient field. Pure soybean oil and silicon oil were used as matrix liquid and the drop liquid, respectively. The information on the motions of two drops was recorded by CCD camera system in the experiments to analyze the trajectories and velocities of the drops. Our experiments showed that, upon two drops approaching each other, the influence of the larger drop on the motion of the smaller one became significant. Meanwhile the smaller drop had a little influence on the larger one all the time. The oscillation of migration velocities of both drops was observed as they were approaching. For a short period the smaller drop even moved backward when it became side by side with the larger one during the migration. Although our experimental results on the behavior of two drops are basically consistent with the theoretical predictions, there are also apparent differences. 2006 Elsevier Ltd. All rights reserved. Keywords: Thermocapillary migration; Drop; Interaction; Oscillation 1. Introduction A bubble or drop will move when placed in another fluid with temperature gradient. This motion happens as a consequence of the variation of interfacial tension with temperature. Such a phenomenon is already known as Marangoni migration problem. With the development of microgravity science, bubble dynamics and droplet dynamics became a hot point problem of research because this investigation is very important for basic research as well as for applications in reduced gravity environment, such as space material science, chemical engineering and so on. Young et al. first investigated the thermocapillary migration of

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A hierarchical model is proposed for the joint moments of the passive scalar dissipation and the velocity dissipation in fluid turbulence. This model predicts that the joint probability density function (PDF) of the dissipations is a bivariate log-Poisson. An analytical calculation of the scaling exponents of structure functions of the passive scalar is carried out for this hierarchical model, showing a good agreement with the results of direct numerical simulations and experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since hydration forces become very strong at short range and are particularly important for determining the magnitude of the adhesion between two surfaces or interaction energy, the influences of the hydration force and elastic strain energy due to hydration-induced layering of liquid molecules close to a solid film surface on the stability of a solid film in a solid-on-liquid (SOL) nanostructure are studied in this paper. The liquid of this thin SOL structure is a kind of water solution. Since the surface forces play an important role in the structure, the total free energy change of SOL structures consists of the changes in the bulk elastic energy within the solid film, the surface energy at the solid-liquid interface and the solid-air interface, and highly nonlinear volumetric component associated with interfacial forces. The critical wavelength of one-dimensional undulation, the critical thickness of the solid film, and the critical thickness of the liquid layer are studied, and the stability regions of the solid film have been determined. Emphasis is placed on calculation of critical values, which are the basis of analyzing the stability of the very thin solid film.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transition from hard to soft magnetic behaviour with increasing quenching rate is shown for Nd60WAl10Fe20Co10 melt-spun ribbons with different thickness. Microstructure and magnetic domain structure of ribbons were studied by magnetic force microscopy (MFM). Particle sizes < 5 nm decreasing gradually with increasing quenching rate were deduced from topographic images which differ from large-scale magnetic domains with a periodicity of about 350 nm in all ribbons irrespective the coercivity. This indicates that the magnetic properties of the alloy are governed by interaction of small magnetic particles. It is concluded that the presence of short-range-ordered structures with a local ordering similar to the Al metastable Nd-Fe binary phase is responsible for the hard magnetic properties in samples subjected to relatively low quenching rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetic domain structure of hard magnetic Nd60Al10Fe20Co10 bulk metallic glass (BMG) has been studied by using magnetic force microscopy. In the magnetic force images it is shown that the exchange interaction type magnetic domains with a period of about 360 nm do exist in the BMG, which is believed to be associated with the appearance of hard-magnetic properties in this system. As the scale of the magnetic domain is much larger than the size of the short-range ordered atomic clusters existing in the BMG, it is believed that the large areas of magnetic contrast are actually a collection of a group of clusters aligned in parallel by strong exchange coupling interaction. After fully crystallization, the BMG exhibits paramagnetism. No obvious magnetic contrast is observed in the magnetic force images of fully crystallized samples, except for a small quantity of ferromagnetic crystalline phase with low coercivity and an average size of 900 nm.