156 resultados para Finite difference time-domain analysis
Resumo:
The mode frequencies and quality factors (Q-factors) in two-dimensional (2-D) deformed square resonators are analyzed by finite-difference time-domain (FDTD) technique. The results show that the deformed square cavities with circular and cut corners have larger Q-factors than the perfect ones at certain conditions. For a square cavity with side length of 2 mu m and refractive index of 3.2, the mode Q-factor can increase 13 times as the perfect corners are replaced by a quarter of circle with radius of 0.3 pm. Furthermore the blue shift with the increasing deformations is found as a result of the reduction in effective resonator area. In square cavities with periodic roughness at sidewalls which maintains the symmetry of the square, the Q-factors of the whisperin gallery (WG)-like modes are still one order of magnitude larger that those of non-WG-like modes. However, the Q-tactors of these two types of modes are of the same order in the square cavity with random roughness. We also find that the rectangular and rhombic deformation largely reduce the Q-factors with the increasing offset and cause the splitting of the doubly degenerate modes due to the breaking of certain symmetry properties.
Resumo:
The mode frequency and the quality factor of nanowire cavities are calculated from the intensity spectrum obtained by the finite-difference time-domain (FDTD) technique and the Pade approximation. In a free-standing nanowire cavity with dielectric constant epsilon = 6.0 and a length of 5 mu m, quality factors of 130, 159, and 151 are obtained for the HE11 modes with a wavelength around 375 nm, at cavity radius of 60, 75, and 90 nm, respectively. The corresponding quality factors reduce to 78, 94, and 86 for a nanowire cavity standing on a sapphire substrate with a refractive index of 1.8. The mode quality factors are also calculated for the TE01 and TM01 modes, and the mode reflectivities are calculated from the mode quality factors.
Resumo:
The eigenmode characteristics for equilateral triangle resonator (ETR) semiconductor microlasers are analysed by the finite-difference time-domain technique and the Pade approximation. The random Gaussian correlation function and sinusoidal function are used to model the side roughness of the ETR. The numerical results show that the roughness can cause the split of the degenerative modes, but the confined modes can still have a high quality factor. For the ETR with a 3 mum side length and the sinusoidal fluctuation, we can have a quality factor of 800 for the fundamental mode in the wavelength of 1500 nm, as the amplitude of roughness is 75 mn.
Resumo:
Semiconductor microlasers with an equilateral triangle resonator (ETR) are analyzed by rate equations with the mode lifetimes calculated by the finite-difference time-domain technique and the Pade approximation. A gain spectrum based on the relation of the gain spectrum and the spontaneous emission spectrum is proposed for considering the mode selection in a wide wavelength span. For an ETR microlaser with the side length of about 5 mum, we find that single fundamental mode operation at about 1.55 mum can be obtained as the side length increases from 4.75 to 5.05 mum. The corresponding wavelength tuning range is 93 nm, and the threshold current is about 0.1 to 0.4 mA.
Resumo:
The eigenmodes confined in the equilateral triangle resonator (ETR) are analyzed by deriving the eigenvalues and the mode field distributions and by the finite difference time domain (FDTD) technique. The analytical results show that the one-period-length for the mode light rays inside the ETR is the perimeter of the ETR, and the number of transverse modes is limited by the condition of total internal reflection. In addition, the sum of the longitudinal mode index and the transverse mode index should be an even number, which limits the number of confined modes again. Based on the FDTD technique and the Pade approximation, we calculate the mode resonant frequencies and the quality factors from the local maximum and the width of the spectral distribution of the intensity The numerical results of mode frequencies agree very well with the analytical results, and the quality factor of the fundamental mode is usually higher than that of the higher order transverse modes. The results show that the ETR is suitable to realize single-made operation as semiconductor microcavity lasers.
Resumo:
Square microcavity laser with an output waveguide is proposed and analyzed by the finite-difference time-domain (FDTD) technique. For a square resonator with refractive index of 3.2, side length of 4 microns, and output waveguide of 0.4-micron width, we have got the quality factors (Q factors) of 6.7×10~2 and 7.3×10~3 for the fundamental and first-order transverse magnetic (TM) mode near the wavelength of 1.5 microns, respectively. The simulated intensity distribution for the first-order TM mode shows that the coupling efficiency in the waveguide reaches 53%. The numerical simulation shows that the first-order transverse modes have fairly high Q factor and high coupling efficiency to the output waveguide. Therefore the square resonator with an output waveguide is a promising candidate to realize single-mode directional emission microcavity lasers.
Resumo:
It has been described that the near-field images of a high-density grating at the half self-imaging distance could be different for TE and TM polarization states. We propose that the phases of the diffraction orders play an important role in such polarization dependence. The view is verified through the coincidence of the numerical result of finite-difference time-domain method and the reconstructed results from the rigorous coupled-wave analysis. Field distributions of TE and TM polarizations are given numerically for a grating with period d = 2.3 lambda, which are verified through experiments with the scanning near-field optical microscopy technique. The concept of phase interpretation not only explains the polarization dependence at the half self-imaging distance of gratings with a physical view, but also, it could be widely used to describe the near-field diffraction of a variety of periodic diffractive optical elements whose feature size comparable to the wavelength. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
As distinct from coated photonic crystals, in this paper we propose a novel one that is made of dielectric tubes arranged in a close-packet square lattice. Without metallic cores, this structure is low-loss and convenient to fabricate. A left-handed frequency region is found in the second band by dispersion characteristic analysis. Without inactive modes for the transverse electric mode, negative refraction and subwavelength imaging are demonstrated by the finite-difference time-domain simulations with two symmetrical interfaces, i.e. Gamma X and Gamma M.
Resumo:
abstract {We present a simple and practical method for the single-ended distributed fiber temperature measurements using microwave (11-GHz) coherent detection and the instantaneous frequency measurement (IFM) technique to detect spontaneous Brillouin backscattered signal in which a specially designed rf bandpass filter at 11 GHz is used as a frequency discriminator to transform frequency shift to intensity fluctuation. A Brillouin temperature signal can be obtained at 11 GHz over a sensing length of 10 km. The power sensitivity dependence on temperature induced by frequency shift is measured as 2.66%/K. © 2007 Society of Photo-Optical Instrumentation Engineers.}
Resumo:
We investigate the dependence of the differential reflection on the structure parameters of quantum dot (QD) heterostructures in pump-probe reflection measurements by both numerical simulations based on the finite-difference time-domain technique and theoretical calculations based on the theory of dielectric films. It is revealed that the value and sign of the differential reflection strongly depend on the thickness of the cap layer and the QD layer. In addition, a comparison between the carrier dynamics in undoped and p-doped InAs/GaAs QDs is carried out by pump-probe reflection measurements. The carrier capture time from the GaAs barrier into the InAs wetting layer and that from the InAs wetting layer into the InAs QDs are extracted by appropriately fitting differential reflection spectra. Moreover, the dependence of the carrier dynamics on the injected carrier density is identified. A detailed analysis of the carrier dynamics in the undoped and p-doped QDs based on the differential reflection spectra is presented, and its difference with that derived from the time-resolved photoluminescence is discussed. (C) 2008 American Institute of Physics.
Resumo:
Finite difference time domain (FDTD) method is used for the simulation and analysis of electromagnetic field in the top coupling layer of GaAs/AlGaAs quantum well infrared photodetector (QWIP). Simulation results demonstrated the coupling efficiencies and distributions of electromagnetic (EM) field in a variety of 2D photonic crystal coupling layer structures. A photonic crystal structure for bi-color-QWIP is demonstrated with high coupling efficiency for two wavelengths.
Resumo:
The authors present an analysis of a plasmonic waveguide, simulated using a two-dimensional finite-difference time-domain technique. With the surface structures located on the surface of the metal, the device is able to confine and guide light waves in a sub-wavelength scale. And two waveguides can be placed within 150 nm (similar to 6% of the incident wavelength) that will helpful for the optoelectronic integration. Within the 20 mu m simulation region, it is found that the intensity of the guided light at the interface is roughly two to four times the peak intensity of the incident light, and the propagation length can reach approximately 40 Pm at the wavelength of 2.44 mu m. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The choice of the etching depth for semiconductor microcavities is a compromise between a high Q factor and a difficult technique in a practical fabricating process. In this paper, the influences of the etching depth on mode Q factors for mid-infrared quantum cascade microcylinder and microsquare lasers around 4.8 and 7.8 mu m are simulated by three-dimensional (3D) finite-difference time-domain (FDTD) techniques. For the microcylinder and the microsquare resonators, the mode Q factors of the whispering-gallery modes (WGMs) increase exponentially and linearly with the increase in the etching depth, respectively Furthermore, the mode Q factors of some higher order transverse WGMs may be larger than that of the fundamental transverse WGM in 3D microsquares. Based on the field distribution of the vertical multilayer slab waveguide and the mode Q factors versus the etching depth, the necessary etching depth is chosen at the position where the field amplitude is 1% of the peak value of the slab waveguide. In addition, the influences of sidewall roughness on the mode Q factors are simulated for microsquare resonators by 2D FDTD simulation. (C) 2009 Optical Society of America
Resumo:
The authors present an analysis of plasmonic wave filter and curved waveguide, simulated using a 2-D finite-difference time-domain technique. With different dielectric materials or surface structures located on the interface of the metal/dielectric, the resonant enhanced wave filter can divide light waves of different wavelengths and guide them with low losses. And the straight or curved waveguide can confine and guide light waves in a subwavelength scale. Within the 20 mu m simulation region, it is found that the intensity of the guided light at the interface is roughly four times the peak intensity of the incident light.
Design, fabrication, and characterization of an ultracompact low-loss photonic crystal corner mirror
Resumo:
An ultracompact, low-loss, and broad-band corner mirror, based on photonic crystals, is investigated in this paper. Based on the theoretical analysis of the loss mechanism, the boundary layers of the photonic crystal region are revised to improve the extra losses, and the transmission characteristics are evaluated by using the 3-D finite-difference time-domain method. The device with optimized structure was fabricated on silicon-on-insulator substrate by using electron-beam lithography and inductively coupled plasma etching. The measured extra losses are about 1.1 +/- 0.4 dB per corner mirror for transverse-electronic polarization for the scanning wavelength range of 1510-1630 nm. Dimensions of the achieved PC corner mirror are less than ;7 x 7 mu m(2), which are only about one tenth of conventional wave-guide corner mirrors.