22 resultados para Feature evaluation and selection
Resumo:
The increasing worldwide demand for carbon nanotubes (CNTs) and increasing concern regarding how to safely develop and use CNTs are requiring a low-cost, simple, and highly sensitive CNT detection assay for toxicological evaluation and environmental monitoring. However, this goal is still far from being achieved. All the current CNT detection techniques are not,applicable for automation and field analysis because they are dependent on highly expensive special instruments and complicated sample preparation. On the basis of the capability of single-walled carbon nanotubes (SWNTs) to specifically induce human telomeric i-motif formation, we design an electrochemical DNA (E-DNA) sensor that can distinguish single- and multiwalled carbon nanotubes both in buffer and in cell extracts. The E-DNA sensor can selectively detect SWNTs; with a direct detection limit of 0.2 ppm and has been demonstrated in cancer cell extracts. To the best of our knowledge, this is the first demonstration of a biosensing technique that can distinguish different types of nanotubes. Our work will provide new insights into how to design a biosensor for detection of carbon nanotubes.
Resumo:
Sulige Gasfield, with a basically proven reserve as high as one trillion cubic meters, is one giant gas field discovered in China. The major gas -bearing layers are Upper Paleozoic strata with fluvial-lacustrine sedimentary facies. Generally, gas reservoirs in this field are characteristic by "five low" properties, namely low porosity, low permeability, low formation pressure, low productivity and low gas abundance. Reservoirs in this field also feature in a large distribution area, thin single sandbody thickness, poor reservoir physical properties, thin effective reservoir thickness, sharp horizontal and/or vertical changes in reservoir properties as well as poor connectivity between different reservoirs. Although outstanding achievements have been acquired in this field, there are still several problems in the evaluation and development of the reservoirs, such as: the relation between seismic attributes and reservoir property parameters is not exclusive, which yields more than one solution in using seismic attributes to predict reservoir parameters; the wave impedance distribution ranges of sandstone and mudstone are overlapped, means it is impossible to distinguish them through the application of post-stack impedance inversion; studies on seismic petrophysics, reservoir geophysical properties, wave reflection models and AVO features have a poor foundation, makes it difficult to recognize the specific differences between tight sandstone and gas-bearing sandstone and their distribution laws. These are the main reasons causing the low well drilling success rate and poor economic returns, which usually result in ineffective development and utilization of the field. Therefore, it is of great importance to perform studies on identification and prediction of effective reservoirs in low permeable sandstone strata. Taking the 2D and 3D multiwave-multicomponent seismic exploration block in Su6-Su5 area of Sulige field as a study area and He 8 member as target bed, analysis of the target bed sedimentary characteristics and logging data properties are performed, while criteria to identify effective reservoirs are determined. Then, techniques and technologies such as pre-stack seismic information (AVO, elastic impedance, wave-let absorption attenuation) and Gamma inversion, reservoir litological and geophysical properties prediction are used to increase the precision in identifying and predicting effective reservoirs; while P-wave and S-wave impedance, ratio of P/S wave velocities, rock elastic parameters and elastic impedance are used to perform sandstone gas-bearing property identification and gas reservoir thickness prediction. Innovative achievements are summarized as follows: 1. The study of this thesis is the first time that multiwave-multicomponent seismic data are used to identify and predict non-marine classic reservoirs in China. Through the application of multiwave-multicomponents seismic data and integration of both pre-stack and post-stack seismic data, a set of workflows and methods to perform high-precision prediction of effective reservoirs in low permeable sandstone is established systematically. 2. Four key techniques to perform effective reservoir prediction including AVO analysis, pre-stack elastic wave impedance inversion, elastic parameters inversion, and absorption attenuation analysis are developed, utilizing pre-stack seismic data to the utmost and increasing the correct rate for effective reservoir prediction to 83% from the former 67% with routine methods. 3. This thesis summarizes techniques and technologies used in the identification reservoir gas-bearing properties using multiwave-multicomponent seismic data. And for the first time, quantitative analysis on reservoir fluids such as oil, gas, and/or water are carried out, and characteristic lithology prediction techniques through the integration of pre-stack and post-stack seismic prediction techniques, common seismic inversion and rock elastic parameters inversion, as well as P-wave inversion and converted wave inversion is put forward, further increasing the correct rate of effective reservoir prediction in this area to 90%. 4. Ten seismic attribute parameters are selected in the 3D multi-wave area to perform a comprehensive evaluation on effective reservoirs using weighted-factor method. The results show that the first class effective reservoir covers an area of 10.08% of the study area, while the second and the third class reservoirs take 43.8% and 46% respectively, sharply increasing the success rate for appraisal and development wells.
Resumo:
Study and Application of Damage Mechanism and Protection Method of reservoir in Nanpu Shallow Beach Sea Area is one of the key research projects of Jidong Oilfield Company of PetroChina Company Limited from 2007 to 2008. Located at Nanpu Sag in Huanghua Depression of Bohaiwan Basin, Nanpu Shallow Beach Sea Area with 1000km2 exploration area posseses three sets, shallow Minghuazhen Formation and Guantao Formation of Upper Tertiary, middle-deep Dongying Formation of Lower Tertiary, deep Ordovician, of oil bearing series, according to the achievement of the connecting 3D seismic structure interpretation and the structural geological comprehensive research. Its main reservoir types include Upper Tertiary structural reservoir, Lower Tertiary structural and lithological-structural reservoir, and Ordovician ancient buried hill reservoir. How to protect reservoir, complete well and lift high efficiently is the key to realize high and stable yield of the oil wells during drilling, completing well, testing and repairing well. It is important for reservoir protecting during drilling that directly relate to efficient exploration. Therefore, beginning with basic characteristics and sensitive analysis of reservoir, study of reservoir damage machinism and analysis of reservoir damage potential factor are emphasized when prediction analysis about three-pressure profiles is carried out. The study both of physical and chemical properties and of the strata of the technology of borehole stabilization and reservoir protecting are outstanding. As the conclusions follow: (1)Based on the laboratory experiment about basalt cores, prediction of three- pressure profiles about 30 wells on No.1 and No.2 structure is practiced. The laws of plane pressure distribution are analyzed. (2)According to the analyses about reservoir feature data and about sensitivity evaluation to damage factor in Nanpu oil field, the scheme of reservoir protecting to the sand reservoir of Guantao Formation and the first section of Dongying Formation is put forward. (3)On basis of the analyses on lithological characteristics, mineral compositions, clay minerals, electrical behavior features, physical and chemical properties of basalt of Guantao formation in No.1 and No.2 structure, instability mechanism of basalt sidewall and technical countermeasures are obtained. (4)Aiming at the characteristics of Ordovician dissolution-pore fracture type carbonate reservoir, the scheme of the reservoir protecting to Ordovician is put forward. Creative study of the film forming and sealing and low invasion reservoir protection drilling fluid are successful. In summary, through the study of reservoir heterogeneity and sensitivity, a set of technology and schemes of reservoir protecting is put forward, which is adaptive during drilling the target bed in the research area and establishes the base for efficient exploration. Significant effect has showed in its application in Nanpu oil field.
Resumo:
A series of significant oil-gas exploration progresses have been achieved in Nanpu depression with 1.02 billion ton oil-gas reserves have been proven. It has been confirmed that Nanpu beach has a geologic condition to be a major field based on exhaustive research. This finding, which is integrated reservoir,great reserves, thick oil layer and high productivity in Nanpu depression, is the most excited success in Chinese oil-gas exploration in recent years. This abundant oilfield found is significant to the strategy of oil production stability in the east of China. Nanpu depression exploration is also a crucial exploration project for Petrochina. Based on the comprehensive research on Nanpu formation testing data, we reevaluate and analyze the reservoir property and the structure characteristics, and propose a series of testing technique that are suitable for Jidong oil field development. The results are summarized as follows: 1. The reservoir parameters and characters are defined by formation test data interpretation and systemic dynamic-static data comparison. 2. Based on sources analysis and statistical research related to formation contaminants, some technique measures, which can not only prevent or reduce invasion damage for different formations but also can effectively improve completion efficiency, are proposed. 3. By selecting the testing pressure drawdown, optimum working regulation and flow /shut-in duration, and adopting dynamic-static flow parameters correlation analysis to predict production, an optimum research on working regulation and flow /shut-in duration was accomplished. Optimization formation test principles suitable for any kinds of Nanpu oilfield are established, which can improve test quality, construction efficiency and data recording quality. 4. By reasonable selection of perforating gun and penetrating charge, the perforation penetration has been improved effectively and the flow channel of the oil gas have been expanded, so that the communication between formations and the wellbore is improved better. 5. One joint working procedure which combining formation test, perforation, unloading and stimulation treatment has become the dominant testing technology in the Nanpu offshore Oilfield. This combination technique can implement several procedures using one pipe string, and achieve rapid testing purpose.
Resumo:
The disequilibrium between supply and demand the east part of North China accelerated natural gas exploration in Bohai bay basin. Exploration practice showed that coal-derived gas is important resource. In searching of big to middle scaled coal derived gas field, and realize successive gas supply, the paper carried out integrated study on structural evolution of Pre-Tertiary and evaluation of reservoir forming condition of coal-derived gas. Study work of the paper was based on the following condition: available achievement in this field at present, good understanding of multiphase of tectonic movement. Study work was focused on geological evolution, source rock evaluation and dissection key factors controlling reservoir forming. Based on analysis of seismic data, drilling data, tectonic style of Pre-Tertiary was subdivided, with different tectonic style representing different tectonic process. By means of state of the art, such as analysis of balanced cross section, and erosion restoration, the paper reestablished tectonic history and analyzed basin property during different tectonic phase. Dynamic mechanism for tectonic movement and influence of tectonic evolution on tectonic style were discussed. Study made it clear that tectonic movement is intensive since Mesozoic including 2 phase of compressional movement (at the end of Indo-China movement, and Yanshan movement), 2 phase of extensional movement (middle Yanshan movement, and Himalayan movement), 2 phase of strike slip movement, as well as 2 phase of reversal movement (early Yanshan movement, and early Himalayan movement). As a result, three tectonic provinces with different remnant of strata and different tectonic style took shape. Based on afore mentioned study, the paper pointed out that evolution of Bohai bay basin experienced the following steps: basin of rift valley type (Pt2+3)-craton basin at passive continental margin (∈1-2)-craton basin at active continental margin (∈3- O)-convergent craton basin (C-T1+2)-intracontinental basin (J+K). Superposition of basins in different stage was discussed. Aimed at tectonic feature of multiple phases, the paper put forward concept model of superposition of tectonic unit, and analyzed its significance on reservoir forming. On basis of the difference among 3 tectonic movements in Mesozoic and Cenozoic, superposition of tectonic unit was classified into the following 3 categories and 6 types: continuous subsidence type (I), subsidence in Mesozoic and uplift for erosion in Cenozoic (II1), repeated subsidence and uplift in Mesozoic and subsidence in Cenozoic (II2), repeated subsidence and uplift in Mesozoic and uplift for erosion in Cenozoic (II3), uplift for erosion in Mesozoic and subsidence in Cenozoic (II4), and continuous uplift (III). Take the organic facies analysis as link, the paper established relationship between sedimentary environment and organic facies, as well as organic facies and organic matter abundance. Combined information of sedimentary environment and logging data, the paper estimated distribution of organic matter abundance. Combined with simulation of secondary hydrocarbon generation, dynamic mechanism of hydrocarbon generation, and thermal history, the paper made static and dynamic evaluation of effective source rock, i.e. Taiyuan formation and Shanxi formation. It is also pointed out that superposition of tectonic unit of type II2, type II4, and type I were the most favorable hydrocarbon generation units. Based on dissection of typical primary coal-derived gas reservoir, including reservoir forming condition and reservoir forming process, the paper pointed out key factors controlling reservoir forming for Carboniferous and Permian System: a. remnant thickness and source rock property were precondition; b. secondary hydrocarbon generation during Himalayan period was key factor; c. tectonic evolution history controlling thermal evolution of source rock was main factor that determine reservoir forming; d. inherited positive structural unit was favorable accumulation direction; e. fault activity and regional caprock determined hydrocarbon accumulation horizon. In the end, the paper established reservoir forming model for different superposition of tectonic units, and pointed out promising exploration belts with 11 of the first class, 5 of the second class and 6 of the third class.
Resumo:
As a kind of strategic resource,petroleum play an very important role in current social stability, economic development and state safety. Since 1993 China has turned from a net oil exporter into a net oil importer, the figure of imported oil increased from then on. In 2004 China's total energy consumption exceeded Japan’s, and ranked in the second place, just inferior to America. Today China is the world’s third-largest importing nation, accounting for 6% of world imports and 8% of world consumption. Comparing with other strategic petroleum reserve schemes, underground oil storage possess many advantages, such as security, economy, less pollution, save land, suited for strategic reserve and so on, so it is the most ideal form for strategic petroleum reserve. In the background of China Strategic Petroleum Reserve Program started just now, this paper choose Circum-Bo sea region as a study area, and do some system study on the underground oil storage caverns constructed in inter-large granite rock masses in Circum-Bo sea region. On the foundation of a great amount of information come from both home and abroad, firstly this paper analysed the principle, economy, cavern shape, profile dimension, and gain some cognizances and logos, as follows: ①Hard rock mass such as granite is the major rock, in which underground oil storage are constructed; ②Unlined underground oil storage caverns had been wide spread used as a sort of oil storage form abroad, there already exist a suit of skilled experience and technologies to prevent oil product from leaking; ③Compared with surface tanks, underground oil storage cavern possess predominance in economy clearly. In general, it will be more economical when the storage capacity exceed 50000m3. The quality of rock mass is the most important factor for underground storage cost, however such as hydrogeology, storage capacity, the number of storage galleries, the length, storage product, mechanical equipments, geographic location also influent the cost. In designed depth of the underground storage, the rock mass of Jinzhou mainly belong to class Ⅱ, but parts with dykes, clayization alteration, and dense joints are Ⅲ, Ⅳ; ④Now, there are few underground oil storages span more than 25m in both abroad and home. The examples of some ancient underground works and modern underground excavation with wide span surely give us many precious elicitations to construct more great unlined storage caverns, when the rock mass quality is good, cavern shape and construction method also are proper, it is quite possible to construct underground oil storage cavern with span more than 30m . The main axis orientation of Jinzhou underground oil storage cavern is NW direction, the cavern's elevation locate between -53msl and -76msl. The storage's total volume is about 3×106m3, composed of 8 parallel galleries with 950m length, the pillars between them are 45m, and every two of galleries form one unit, which can deposit 75×104m3 for each unit. The product will be stored are Saudi light and Saudi medium crude oil, the main cavern's section is 411.5m2, with 23m height and 19m width. According to the principle and technique of engineering geomechanics, this study supply a sort of system scientific thinking and method for sitting location of underground oil storage in granite region: ① On the foundation of the earth crust stability sub-zone appraise of Circum-Bo sea region, farther research concerning granite distribution, genesis, geological period and fault structure are conducted in stable areas, generally, this paper select Liaoxi, east shore of Liaotung peninsula and Jiaotung peninsula as target areas for underground oil storage regions, where Mesozoic granite is magnitude; ②After roundly comparison in facts of geologic structure, engineering geology, hydrogeology, topography, transportation and so on of three granite distributed areas, at last, selecting Jingzhou granite zone in Liaoxi out as an ideal construction area; ③ Detailed investigation is conducted in the southeast of Baimashi in Jingzhou development district, the final field. Ultrasonic Borehole Television, as a major way to collect original information of borehole rock mass were used, which is very effective to appraise the quality of deep rock mass; ④ According to the field data of tectonic stress, rock mass quality, the spatial distribution of fracture water, some optimum designs in cross section, axial direction and cavern span have been designed for the underground oil storage cavern layout in Jinzhou. To understand the characteristics of swelling alteration rock in Jinzhou granite mass, collected abundant swelling alteration rock engineering examples in granite, which study them in detail, concluded the swelling alteration rock distribute nearly everywhere in China, intruded medium-basic dykes alteration, along discontinuities and mineral hydrothermal alteration with genesis of granite are three main forms clayization alteration rock in granite rock mass. In Jinzhou field, from macro to micro studied the swelling rock which induced by mid-basic dyke intrusion, with weak swelling. In conclusion, this paper conclude the distribution rule and features of expansion alteration rock in filed, and advise some technical suggestions for excavation at swelling alteration rock part. The main features of this paper: ①In the process of site selection, investigation and design, a suit of technique and method of engineering geomechanics metasynthesis were formed, which is significative to guide the large scale underground oil storage cavern sitting location, investigation and design in granite rock mass; ②The detailed discussion on the engineering geology problems in granite mass, such as weathering crust, faults, dykes and clayization alteration rock, are useful for other projects in aspects of site selection, engineering geology evaluation and stability estimation; ③The summary and integration of the genesis, type, countermeasure relate to swelling alteration rock, also is likely to be used for other underground oil storage caverns constructed in swelling alteration granite. In conclusion, this study is meaningful for guiding the large scale underground oil storage for site selection, investigation and design in granite rock mass.
Resumo:
Permian reservoir in Sulige area of Ordos Basin, on which this paper focused, belongs to fluvial-delta lithofacies. The majority formations in this area are complicated channel sand deposit with serious inhomogeneity which makes natural gas exploration be very tough in this area. This inhomogeneity can be found everywhere both in large horizontal area and vertical profile of inner and interbedded formations.This paper studied the inhomogeneity characteristic of Permian formation in sulige area of Ordos Basin according to the logging data.Correlating with core data, a criterion to distinguish different type of reservoirs by using logging data is determined after the study of logging response is done considering the diverse conditions of deposit environments, lithology and reservoir space. The characteristic relationships between the various type formations and logging responses fully and systemically are established.It investigated reservoir parameter calculation methods amply. Combining the conventional and special logging data, basing on the feature of low porosity -permeability formation of sulige area, a set of methods to calculate reservoir parameters was formed including primary porosity, secondary porosity, fracture porosity, permeability and water saturation under the conditions of both low porosity-permeability and inhomogenous reservoirs. One thing should be pay close attention is the parameter M for calculating saturation. It is found that the M in low porosity -permeability formation decreases as the porosity decrease, which is opposite to the law that M increases as the porosity decrease in the formation with intermediate to high porosity and permeability. This view has innovated the traditional theory and offered theory basis for the logging interpretation of low porosity - permeability reservoir. Meanwhile it also improved the Arqi formula theoretically and enhanced the logging interpretation accuracy and rescued a number of formations which has been thought to be hopeless according to the old theory.By using advantage logging interpretation procedure, a territorial synthetic geology evaluation to the inhomogeneous reservoir was completed basing on the single well interpretation. All the reservoir evaluation parameters including sand formation thickness, primary porosity, secondary porosity were calculated and evaluated. The rules of changing and development for sand formation thickness, sand physical properties and secondary porous were found at different formations of upper part of the Member 8 of Shihezi, lower part of the Member 8 of Shihezi, the Member 1 of shanxi and the Member 2 of shanxi individually. Evaluation and Correlation of these five formations were also completed and one conclusion was arrived: upper part of the Member 8 of Shihezi formation has the best performance followed by the lower part of the Member 8 of Shihezi, the Member 1 of shanxi and the Member 2 of shanxi formation.After studied the relationship between reservoir deposition characteristic and the natural gas richness, it is regarded that reservoir inhomogeneity is the key issue of the impaction on the natural gas. Natural gas in Sulige gas field was mainly accumulated in sands of channel bar, distributary channel and debouchure bar. Especially, the quartz sand with rich of secondary porous space has obvious better physical properties than other reservoir and usually can forms the concentration of natural gas.