139 resultados para Excited states


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Density functional theory (DFT) electronic structure calculations were carried out to predict the structures and the absorption and emission spectra for porphyrin and a series of carbaporphyrins-carbaporphyrin, adj-dicarbaporphyrin, opp-dicarbaporphyrin, tricarbaporphyrin and tetracarbaporphyrin. The ground- and excited-state geometries were optimized at the B3LYP/6-31g(d) and CIS/6-31g(d) level, respectively. The optimized ground-state geometry and absorption spectra of porphyrin, calculated by DFT and time-dependent DFT (TDDFT), are comparable with the available experimental values. Based on the optimized excited-state geometries obtained by CIS/6-31g(d) method, the emission properties are calculated using TDDFT method at the B3LYP/6-31g(d) level. The effects of the substitution of nitrogen atoms with carbon atoms at the center positions of porphyrin are discussed. The results indicate that the two-pyrrole nitrogens are important to the chemical and physical properties for porphyrin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of laser-field parameters, such as intensity and pulse width, on the population of molecular excited state is investigated by using the time-dependent wavepacket method. For a two-state system in intense laser fields, the populations in the upper and lower states are given by the wavefunctions obtained by solving the Schrodinger equation through split-operator scheme. The calculation shows that both the laser intensity and the pulse width have a strong effect on the population in molecular excited state, and that as the common feature of light-matter interaction (LMI), the periodic changing of the population with the evolution time in each state can be interpreted by Rabi oscillation and area-theorem. The results illustrate that by controlling these two parameters, the needed population in excited state of interest can be obtained, which provides the foundation of light manipulation of molecular processes. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report on the upconversion luminescence of a pure YVO4 single crystal excited by an infrared femtosecond laser. The luminescent spectra show that the upconversion luminescence comes from the transitions from the lowest excited states T-3(1), T-3(2) to the ground state (1)A(1) of the VO43-. The dependence of the fluorescence intensity on the pump power density of laser indicates that the conversion of infrared irradiation to visible emission is dominated by three-photon excitation process. We suggest that the simultaneous absorption of three infrared photons promotes the VO43- to excited states, which quickly cascade down to lowest excited states, and radiatively relax to ground states, resulting in the broad characteristic fluorescence of VO43-. (c) 2005 Optical Society of America.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Within the framework of second-order Rayleigh-Schrodinger perturbation theory, the polaronic correction to the first excited state energy of an electron in an quantum dot with anisotropic parabolic confinements is presented. Compared with isotropic confinements, anisotropic confinements will make the degeneracy of the excited states to be totally or partly lifted. On the basis of a three-dimensional Frohlich's Hamiltonian with anisotropic confinements, the first excited state properties in two-dimensional quantum dots as well as quantum wells and wires can also be easily obtained by taking special limits. Calculations show that the first excited polaronic effect can be considerable in small quantum dots.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have investigated the dispersive properties of excited-doublet four-level atoms interacting with a weak probe field and an intense coupling laser field. We have derived an analytical expression of the dispersion relation for a general excited-doublet four-level atomic system subject to a one-photon detuning. The numerical results demonstrate that for a typical rubidium D1 line configuration, due to the unequal dipole moments for the transitions of each ground state to double excited states, generally there exists no exact dark state in the system. Close to the two-photon resonance, the probe light can be absorbed orgained and propagate in the so-called superluminal form. This system may be used as an optical switch.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We propose a method for uniformly calculating the electronic states of a hydrogenic donor impurity in low-dimensional semiconductor nano-structures in the framework of effective-mass envelope-function theory, and we study the electronic structures of this systems. Compared to previous methods, our method has the following merits: (a) It can be widely applied in the calculation of the electronic states of hydrogenic donor impurities in nano-structures of various shapes; (b) It can easily be extended to study the effects of external fields and other complex cases; (c) The excited states are more easily calculated than with the variational method; (d) It is convenient to calculate the change of the electronic states with the position of a hydrogenic donor impurity in nano-structures; (e) The binding energy can be calculated explicitly. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this letter, we present a facet coating design to delay the excited state (ES) lasing for 1310 nm InAs/GaAs quantum dot lasers. The key point of our design is to ensure that the mirror loss of ES is larger than that of the ground state by decreasing the reflectivity of the ES. In the facet coating design, the central wavelength is at 1480 nm, and the high- and low-index materials are Ta2O5 and SiO2, respectively. Compared with the traditional Si/SiO2 facet coating with a central wavelength of 1310 nm, we have found that with the optimal design the turning temperature of the ES lasing has been delayed from 90 to 100 degrees C for the laser diodes with cavity length of 1.2 mm. Furthermore, the characteristic temperature (T-0) of the laser diodes is also improved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The exciton states in isolated and semi-isolated quantum wires are studied. It is found that the image charges have a large effect on the effective Coulomb potential in wires. For the isolated wire the effective potential approaches the Coulomb potential in vacuum at large z distance. For the semi-isolated wire the effective potential is intermediate between the Coulomb potential in vacuum and the screened Coulomb potential at large distance. The exciton binding energy in the isolated wire is about ten times larger than that in the quantum well, and that in the semi-isolated wire is also intermediate between those in the isolated wire and in the quantum well. When the lateral width increases the binding energy decreases further, and approaches that in the quantum well. The real valence-band structure is taken into account, the exciton wave functions of the ground state in the zero-order approximation are given, and the reduced mass is calculated. The effect of the coupling between the ground and excited states are considered by the degenerate perturbation method, and it is found the coupling effect is small compared to the binding energy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The cross sections of the 18 electron photoionization and corresponding shake-up processes for Li atoms in the ground state 1s(2)2s and excited states 1s(2)2p, 1s(2)3p, 1s(2)3p and 1s(2)3d are calculated using the multi-configuration Dirac-Fock method. The latest experimental photoelectron spectrum at hv = 100 eV [Cubaynes D et al. Phys. Rev. Lett. 99 (2007) 213004] has been reproduced by the present theoretical investigation excellently. The relative intensity of the shake-up satellites shows that the effects of correlation and relaxation become more important for the higher excited states of the lithium atom, which are explained very well by the spatial overlap of the initial and final state wavefunctions. In addition, strong dependence of the cross section on the atomic orbitals of the valence electrons are found, especially near the threshold.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The nucleus Cs-126 was investigated by means of in-beam gamma-ray spectroscopy techniques using the Nordball detector system at the Niels Bohr Institute. Excited states of Cs-126 were populated via the Cd-116(N-14, 4n)Cs-126 reaction at a beam energy of 65 MeV. The Cs-126 level scheme was considerably extended, especially at negative parity and about 40 new levels and 70 new transitions were added into the level scheme. The previously reported negative-parity rotational bands, built on pi g(7/2)circle times nu h(11/2),pi d(5/2)circle times nu h(11/2),pi h(11/2)circle times nu g(7/2), and pi h(11/2)circle times nu d(5/2) configurations, have been extended and evolve into bands involving rotationally aligned (pi h(11/2))(2) and (nu h(11/2))(2) quasiparticles. Two new rotational bands have been tentatively assigned the pi h(11/2)circle times nu s(1/2) and pi g(9/2)circle times nu h(11/2) configurations, respectively

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To gain a better insight into alpha-decay fine structure, we calculate the relative intensities of alpha decay to 2(+) and 4(+) rotational states in the framework of the generalized liquid drop model (GLDM) and improved Royer's formula. The calculated relative intensities of a decay to 2(+) states are in good agreement with the experimental data. For the relative intensities of alpha decay to 4(+) states, a good agreement with experimental data is achieved for Th and U isotopes. The formula we obtain is useful for the analysis of experimental data of alpha-decay fine structure. In addition, some predicted relative intensities which are still not measured are provided for future experiments.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

For the first time, we have studied the potential-energy curves, spectroscopic terms, vibrational levels, and the spectroscopic constants of the ground and low-lying excited states of NiI by employing the complete active space self-consistent-field method with relativistic effective core potentials followed by multireference configuration-interaction calculations. We have identified six low-lying electronic states of NiI with doublet spin multiplicities, including three states of Delta symmetry and three states of Pi symmetry of the molecule within 15 000 cm(-1). The lowest (2)Delta state is identified as the ground state of NiI, and the lowest (2)Pi state is found at 2174.56 cm(-1) above it. These results fully support the previous conclusion of the observed spectra although our computational energy separation of the two states is obviously larger than that of the experimental values. The present calculations show that the low-lying excited states [13.9] (2)Pi and [14.6] (2)Delta are 3 (2)Pi and 3 (2)Delta electronic states of NiI, respectively. Our computed spectroscopic terms, vibrational levels, and spectroscopic constants for them are in good agreement with the experimental data available at present. In the present work we have not only suggested assignments for the observed states but also computed more electronic states that are yet to be observed experimentally. (c) 2005 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Photoelectron angular distributions produced in above-threshold ionization (ATI) are analysed using a nonperturbative scattering theory. The numerical results are in good qualitative agreement with recent measurements. Our study shows that the origin of the jet-like structure arises from the inherent properties of the ATI process and not from the angular momentum of either the initial or the excited states of the atom.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We propose a universal quantum computation scheme for trapped ions in thermal motion via the technique of adiabatic passage, which incorporates the advantages of both the adiabatic passage and the model of trapped ions in thermal motion. Our scheme is immune from the decoherence due to spontaneous emission from excited states as the system in our scheme evolves along a dark state. In our scheme the vibrational degrees of freedom are not required to be cooled to their ground states because they are only virtually excited. It is shown that the fidelity of the resultant gate operation is still high even when the magnitude of the effective Rabi frequency moderately deviates from the desired value.