305 resultados para Evaporation.
Resumo:
ZrO2 thin films were prepared by electron beam evaporation at different oxygen partial pressures. The influences of oxygen partial pressure on structure and related properties of ZrO2 thin films were studied. Transmittance, thermal absorption, structure and residual stress of ZrO2 thin films were measured by spectrophotometer, surface thermal lensing technique (STL), X-ray diffraction and optical interferometer, respectively. The results showed that the structure and related properties varied progressively with the increase of oxygen partial pressure. The refractive indices and the packing densities of the thin films decreased when the oxygen partial pressure increased. The tetragonal phase fraction in the thin films decreased gradually as oxygen partial pressure increased. The residual stress of film deposited at base pressure was high compressive stress, the value decreased with the increase of oxygen partial pressure, and the residual stress became tensile with the further increase of oxygen pressure, which was corresponding to the evolution of packing densities and variation of interplanar distances. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The TiOx thin films were prepared by electron beam evaporation using TiO as the starting material. The effect of the annealing temperature on the optical and electrical properties was investigated. The spectra of X-ray photoelectron spectroscopy reveal that Ti in the films mainly exist in the forms of Ti2+ and Ti3+ below 400 degrees C 24h annealing. The charge transfer between different titanium ion contribute greatly to the color, absorption, and electrical resistance of the films. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Zirconia films were prepared by e-beam evaporation, and oxygen plasma treatment was used to modify film properties. Spectrophotometry, x-ray diffractometry (XRD), and atomic force microscopy were used to characterize refractive index, extinction coefficient, rnicrostructure, and surface roughness, respectively. The experimental results indicate that both refractive index and extinction coefficient of the films were reduced slightly after oxygen plasma treatment, with the decrease of intrinsic stress and surface roughness. From XRD spectra, the intensity decrease of the T(110) diffraction peak was clearly observed after the treatment, which was caused by the restructuring of the film atoms. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The effects of working pressure on properties of Al2O3 thin films are investigated. Transmittance of the Al2O3 thin film is measured by a Lambda 900 spectrometer. Laser-induced damage threshold (LIDT) is measured by a Nd:YAG laser at 355nm with a pulse width of 7ns. Microdefects were observed under a Nomarski microscope. The samples are characterized by optical properties and defect, as well as LIDT under the 355 nm Nd: YAG laser radiation. It is found that the working pressure has fundamental effect on the LIDT. It is the absorption rather than the microdefect that plays an important role on the LID T of Al2O3 thin film.
Resumo:
Al2O3/SiO2 films have been deposited as UV antireflection coatings on 4H-SiC by electron-beam evaporation and characterized by reflection spectrum, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The reflectance of the Al2O3/SiO2 films is 0.33% and 10 times lower than that of a thermally grown SiO2 single layer at 276 nm. The films are amorphous in microstructure and characterize good adhesion to 4H-SiC substrate. XPS results indicate an abrupt interface between evaporated SiO2 and 4H-SiC substrate free of Si-suboxides. These results make the possibility for 4H-SiC based high performance UV optoelectronic devices with Al2O3/SiO2 films as antireflection coatings. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper describes the preparation and the characterization Of Y2O3 stabilized ZrO2 thin films produced by electric-beam evaporation method. The optical properties, microstructure, surface morphology and the residual stress of the deposited films were investigated by optical spectroscopy, X-ray diffraction (XRD), scanning probe microscope and optical interferometer. It is shown that the optical transmission spectra of all the YSZ thin films are similar with those of ZrO2 thin film, possessing high transparency in the visible and near-infrared regions. The refractive index of the samples decreases with increasing of Y2O3 content. The crystalline structure of pure ZrO2 films is a mixture of tetragonal phase and monoclinic phase, however, Y2O3 stabilized ZrO2 thin films only exhibit the cubic phase independently of how much the added Y2O3 content is. The surface morphology spectrum indicates that all thin films present a crystalline columnar texture with columnar grains perpendicular to the substrate and with a predominantly open microporosity. The residual stress of films transforms tensile from compressive with the increasing Of Y2O3 molar content, which corresponds to the evolutions of the structure and packing densities. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Influence of ZrO2 in HfO2 on the reflectance of HfO2/SiO2 multilayer at 248 nm was investigated. Two kinds of HfO2 with different ZrO2 content were chosen as high refractive index material and the same kind of SiO2 as low refractive index material to prepare the mirrors by electron-beam evaporation. The impurities in two kinds of HfO2 starting coating materials and in their corresponding single layer thin films were determined through glow discharge mass spectrum (GDMS) technology and secondary ion mass spectrometry (SIMS) equipment, respectively. It showed that between the two kinds of HfO2, either the bulk materials or their corresponding films, the difference of ZrO2 was much larger than that of the other impurities such as Ti and Fe. It is the Zr element that affects the property of thin films. Both in theoretical and in experimental, the mirror prepared with the HfO2 starting material containing more Zr content has a lower reflectance. Because the extinction coefficient of zirconia is relatively high in UV region, it can be treated as one kind of absorbing defects to influence the optical property of the mirrors. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Antireflection coatings at the center wavelength of 1053 nm were prepared on BK7 glasses by electron-beam evaporation deposition (EBD) and ion beam assisted deposition (IBAD). Parts of the two kinds of samples were post-treated with oxygen plasma at the environment temperature after deposition. Absorption at 1064 nm was characterized based on surface thermal lensing (STL) technique. The laser-induced damage threshold (LIDT) was measured by a 1064-nm Nd:YAG laser with a pulse width of 38 ps. Leica-DMRXE Microscope was applied to gain damage morphologies of samples. The results revealed that oxygen post-treatment could lower the absorption and increase the damage thresholds for both kinds of as-grown samples. However, the improving effects are not the same. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The well known 'crystal seed' theory is first applied in this work to prepare TiO2 film: a high refractive index rutile TiO2 film is grown by electron beam evaporation on the rutile seed formed by 1100 degrees C annealing. The average n is larger than 2.4, by far the highest in all the authors' TiO2 films. The films are characterised by optical properties, microstructure and surface morphologies. It is found that the refractive index shows positive relation with the crystal structure, grain size, and packing density and roughness of the film. The film has lower density of granularity and nodule defects on the surface than those of the film deposited by magnetron sputtering. The result shows attractive application in complex filter and laser coatings.
Resumo:
Two-dimensional ZnO nanowall networks were grown on ZnO-coated silicon by thermal evaporation at low temperature without catalysts or additives. All of the results from scanning electronic spectroscope, X-ray diffraction and Raman scattering confirmed that the ZnO nanowalls were vertically aligned and c-axis oriented. The room-temperature photoluminescence spectra showed a dominated UV peak at 378 nm, and a much suppressed orange emission centered at similar to 590 nm. This demonstrates fairly good crystal quality and optical properties of the product. A possible three-step, zinc vapor-controlled process was proposed to explain the growth of well-aligned ZnO nanowall networks. The pre-coated ZnO template layer plays a key role during the synthesis process, which guides the growth direction of the synthesized products. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
We present in this paper results obtained from a parabolic flight campaign regarding ethanol sessile drop evaporation under reduced gravity conditions. Drops are created using a syringe pump by means of injection through a PTFE (polytetrafluoroethylene) substrate. The drops are recorded using a video camera and an infrared camera to observe the thermal motion inside the drop and on the heating substrate. The experimental set-up presented in this paper enables the simultaneous visualization and access to the heat flux density that is transferred to the drop using a heat flux meter placed between the heating block and the PTFE substrate. We evidence original thermal spreading phenomena during the ethanol drop creation on a heated PTFE substrate. The drop exhibits specific behaviour which is discussed here. This work is performed in the frame of a French-Chinese collaboration (project IMPACHT) for future experiments in a Chinese scientific satellite.
Resumo:
In order to realize the steady-state droplet evaporation, image feedback control system is designed based on DSP. The system has three main functions: to capture and store droplet images during the experiment; to calculate droplet geometrical and physical parameters such as volume, surface area, surface tension and evaporation velocity at a high-precision level; to keep the droplet volume constant. The DSP can drive an injection controller with the PID control to inject liquid so as to keep the droplet volume constant. The evaporation velocity of droplet can be calculated by measuring the injected volume during the evaporation. The structure of hardware and software of the control system, key processing methods such as contour fitting and experimental results are described.