492 resultados para Er3 ions
Resumo:
The integrated absorption cross section Sigma(abs), I peak emission cross section sigma(cmi), Judd-Ofeld intensity parameters Omega(iota) ( t = 2,4,6), and spontaneous emission probability A(R) of Er3+ ions were determined for Erbium doped alkali and alkaline earth phosphate glasses. It is found the compositional dependence of sigma(emi) 5 almost similar to that of Sigma(abs), which is determined by the sum, of Omega(1) (3 Omega(2) + 10 Omega(4) + 21 Omega(6)). In addition, the compositional dependence of Omega(1) was studied in these glass systems. As a result, compared with. Omega(4) and Omega(6) the Omega(2) has a stronger compositional dependence on the ionic radius and content of modifers. The covalency of Er-O bonds in phosphate glass is weaker than that in silicate glass, germanate glass, aluminate glass, and tellurate glass, since Omega(6) of phosphate glass is relatively large. A(R) is affected by the covalency of the Er3+ ion sites and corresponds to the Omega(6) value.
Resumo:
Er^3+Er^3+Er^3+cEr^3+Er^3+Er^3+
Resumo:
TgTx3771488552nmMcCumberEr^3+4I132^4I1521532nm09110^-20cm^26328nmAg^+300De28210^-1
Resumo:
TeO2-ZnO-PbCl2977nm153m^4I13.2^4I15/2(69nm)^2H11/2^4I15/2(527nm)^4S3/2^4I15/2(549nm)^4R9/2^4I15/2(666nm)Judd-Ofelt1(t=246)2=58710^20cm^2,4=20810^2-cm^2
Resumo:
Fluorophosphate glass with 4 mol.% ErF3 content was prepared. The different scanning calorimetry was conducted. Raman spectrum, infrared transmission spectrum, absorption spectrum were measured. Fluorescence spectrum and lifetime of emission around 1.53 mu m were measured under 970 nm laser diode excitation. The metaphosphate content in the composition is limited, but the maximum phonon energy of glass amounts to 1290 cm- 1, and is comparatively high. The full width at half maximum is about 56 nm, and is wider than for most of the materials investigated. The measured lifetime of I-4(13/2) -> I-4(15/2) transition, contributed by the high phonon energy, inefficient interaction of Er3+ ions, and low water content, amounts to no less than 7.36 ms though the Er3+ concentration is high. This work might provide useful information for the development of compact optical devices.
Resumo:
An efficient near-infrared (NIR) quantum cutting (QC) in GdAl3(BO3)(4):RE3+,Yb3+ (RE=Pr, Tb, and Tm) phosphors has been demonstrated, which involves the conversion of the visible photon into the NIR emission with an optimal quantum efficiency approaching 200%, by exploring the cooperative downconversion mechanism from RE3+ (RE=Pr, Tb, and Tm) excitons to the two activator ions, Yb3+. The development of NIR QC phosphors could open up a new approach in achieving high efficiency silicon-based solar cells by means of downconversion in the visible part of the solar spectrum to similar to 1000 nm photons with a twofold increase in the photon number. (c) 2007 American Institute of Physics.
Resumo:
Er3+-doped TeO2-based oxysulfide glasses have been prepared in argon atmosphere in carbon crucibles. The thermal analysis and spectroscopic properties of Er (3+) have been considered in terms of sulfide influence. As a function of composition, we have principally measured optical absorption, spontaneous emission and lifetime measurements. Judd-Ofelt theory was introduced to calculate bandwidth and emission cross-section. The results show the product FVMM x sigma(c) increase from 476.8 8 to 635.04 10(-21) cm(2) nm evidently with the addition of 10 mol% PbS into tellurite glass, which indicates a perfect effect on spectra property of Er3+ ions. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A series of five different concentration erbium-doped tellurite glasses with various hydroxl groups were prepared. Infrared spectra of glasses were measured. In order to estimate the exact content of OH- groups in samples, various absorption coefficients of the OH- vibration band were analyzed under the different oxygen bubbling times. The absorption spectra of the glasses were measured, and the Judd-Ofelt intensity parameters Omega(i) of samples with the different erbium ions concentration and OH- contents were calculated on the basis of the Judd-Ofelt theory. The peak stimulated emission cross-section of (I13/2 ->I15/2)-I-4-I-4 transition of the samples was finally calculated by using the McCumber theory. The fluorescence spectra of Er3+:I-4(13/2)->I-4(15/2) transition and the lifetime of Er3+:I-4(13/2) level of the samples were measured. The effects of OH- groups on the spectroscopic properties of Er3+ doped samples with the different concentrations were discussed. The results showed that the OH- groups had great influences on the Er3+ lifetime and the fluorescence peak intensity. The OH- group is a main influence factor of fluorescence quenching when the doping concentration of Er2O3 is smaller than 1.0 mol%, but higher after this concentration, the energy transfer of Er3+ ions turns into the main function of the fluorescence quenching. And basically, there is no influence on the other spectroscopic properties (FWHM, absorption spectra, peak stimulated emission cross section, etc.).
Resumo:
Er^3+Yb^3+Er^3+Yb^3+Er^3+1533nm-Er^3+1533nm07210^20cm^2SchottIOG1Er^3+06710^-20cm^2155m
Resumo:
In this presentation, nanocrystalline YVO4:A (A=Eu3+, Dy3+, SM3+, Er3+) phosphor films and their patterning were fabricated by a Pechini sol-gel process combined with a soft lithography (micro-molding in capillaries). XRD, FT-IR, AFM and optical microscope, absorption spectra, photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 400 degrees C and the crystallinity increased with the increase of annealing temperatures. Transparent nonpattemed phosphor films were uniform and crack free, which mainly consisted of grains with an average size of 90nm. Patterned crystalline phosphor film bands with different widths (5-30 mu m) were obtained. The doped rare earth ions (A) showed their characteristic emission in crystalline YVO4 phosphor films due to an efficient energy transfer from vanadate groups to them. The Sm3+ and Er3+ ions also showed upconversion luminescence in YVO4 film host. The optimum concentration for Eu3+ was determined to be 7 mol% and those for Dy3+, Sm3+, Er3+ were 2 Mol% of Y3+ in YVO4 films, respectively.
Resumo:
The structure of the title compound, [Er-2(C3H7NO2)(4)- (H2O)(8)](ClO4)(6), consists of dimeric [Er-2(DL-alanine)(4)-(H2O)(8)](6+) cations and perchlorate anions. The four alanine molecules act as bridging ligands linking two Er3+ ions through their carboxyl O atoms. Each Er3+ ion is also coordinated by four water molecules to complete eightfold coordination in a square antiprism fashion. The perchlorate anions and the methyl groups of the alanine ligands are disordered.
Resumo:
In the structure of catena-poly[{triaqua(L-pro-line-O)erbium(III)}-bis-mu-(L-proline-O:O')-{triaqua-(L-proline-O)erbium(III)}-bis-mu-(L-proline-O:O') hexaperchlorate], each Er3+ ion is coordinated by five carboxyl O atoms from the L-proline molecules and three water molecules. Four of the SiX L-proline molecules act as bidentate bridging ligands to link the Er3+ ions through the carboxyl groups, thus producing a one-dimensional chain structure. The other two ligands coordinate unidentately to the rare-earth ions. Hydrogen bonds formed between the coordinated water molecules and between the water and unidentate proline ligand stabilize the polymeric chain.
Resumo:
For the first time. effect of halide ions (F-, Cl-, Br-, and I-) introduction on structure, thermal stability, and upconversion fluorescence in Er3+/Yb3+-codoped oxide-halide germanium-bismuth glasses has been systematically investigated. The results show that halide ions modified germanium-bismuth glasses have lower maximum phonon energy and phonon density, worse thermal stability. longer measured lifetimes of I-4(l1/2) level, and stronger upconversion emission than germanium-bismuth glass. All these results indicate that halide ions play an important role in the formation of glass network, and have an important influence on the upconversion luminescence. The possible upconversion mechanisms of Er3+ ion are also evaluated. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
Effect of fluoride ions introduction on structural, OH- content and up-conversion luminescence properties in Er3+-doped heavy metal oxide glasses have been investigated. Structure was investigated, indicating that fluoride has an important influence on the phonon density, maximum phonon energy of host glasses. With increasing fluoride content, the up-conversion luminescence intensity and quantum efficiencies increase notably, which could not be explained only by the maximum phonon energy change of host glasses. Our results show that, with the introduction of PbF2, the decrease of phonon density and OH- content contributes more to the enhanced up-conversion emissions than that of maximum phonon energy. (c) 2005 Elsevier B.V. All rights reserved.