39 resultados para Equação de Maxwell 2D
Resumo:
现代多脉冲及2D NMR技术是过去十年中发展起来的崭新的NMR实验方法。计算机模拟做为NMR实验的强有力分析手段已日益受到重视。国内这方面工作开展得尚很少;国外发表的工作主要采用的是数字模拟,存在分析结果不够直观、物理意义不够清晰等缺陷。本论文工作采用乘积算符方法研制出对分析多脉冲及2D NMR实验普适的模拟程序PROPER;在乘积算符基础上,针对磁等性自旋体系,提出了实用的对称化乘积算符及多量子积算符方法。一、多脉冲及2D NMR实验的计算机模拟 1. 采用乘积算符方法在本所PDP-11/23微机上研制了多脉冲及2D NMR实验的模拟程序PROPER。该程序对不超过4核(I = 1/2)的同核及异核弱耦合自旋体系非选择性脉冲序列的分析是普遍适用的。受计算机内存的限制,PROPER程序所能处理的脉冲序列脉冲间隔数目一般不超过10。2. 应用PROPER模拟程序对INEP和DEPT脉冲序列进行了分析比较;特别对BIRD脉冲序列的各种相位变型进行了模拟分析,给出了分析结果,分析过程中考虑了影响BIRD作用效果的同核耦合因素。应用结果表明,PROPER程序计算正确、迅速、给出的模拟结果较通常的数字模拟方法简单、直观、物理意义清楚,便于分析。由于采用算符模拟,结果的输出打印比较费时。目前,PROPER程序正在改进和完善之中。二、多脉冲及2D NMR实验的密度算符描述 1. 针对磁等性自旋(I = 1/2)体系,首次提出了对称化乘积算符描述方法。在通常的乘积算符基础上,引入了对称化乘积算符,并对其数理基础进行了详细论证。推导了算符循环对易关系决定的Liourill-Von Neumann方程的解,给出了算符间普遍存在的循环对易关系及其相应的演化公式。据此,以InS(I = 1/2, S = 1/2; n = 2,3)自旋体系为例,对DEPT脉冲序列进行了分析;结果表明,该方法较通常的乘积算符方法对磁等性自旋体系的分析要简单、实用,且物理意义更加明确。由于该方法涉及较多的算符对易关系,因此不易计算机编程。2. 在对称化乘积算符基础上引入了多量子积算符的概念。以In(I = 1/2; n = 2,3)体系为例,给出了两者的互换关系。推导出了具有标量耦合作用的两组合粒子体系普适的多量子积算符环对易关系及相应的演化解析式。多量子积算符方法可望将1/2-自旋磁等性组合粒子表象与自旋大于1/2的单粒子表象统一起来,并为计算机模拟提供新的数学方法。该方法尚有待于进一步研究。
Resumo:
Short-range correlations of two-dimensional electrons in a strong magnetic field are shown to be triangular in nature well below half-filling, but honeycomb well above half-filling. The half-filling point is thus proposed, and qualitatively confirmed by three-body correlation calculations, to be a new type of disorder point where short-range correlations change character. A wavefunction study also suggests that nodes become unbound at half-filling. Evidence for incompressibility but deformability of the half-filling state earlier suggested by Fano, Ortolani and Tosatti, is also presented and found to be in agreement with recent experiments.
Resumo:
We present an all-e-beam lithography (EBL) process for the patterning of photonic crystal waveguides.The whole device structures are exposed in two steps. Holes constituting the photonic crystal lattice and defects are first exposed with a small exposure step size (less than 10nm). With the introduction of the additional proximity effect to compensate the original proximity effect, the shape, size, and position of the holes can be well controlled.The second step is the exposure of the access waveguides at a larger step size (about 30nm) to improve the scan speed of the EBL. The influence of write-field stitching error can be alleviated by replacing the original waveguides with tapered waveguides at the joint of adjacent write-fields. It is found experimentally that a higher exposure efficiency is achieved with a larger step size;however,a larger step size requires a higher dose.
Etude par analyse d’images en 2D des processus d’agregation et d’evolution des prosites dans les sol
Resumo:
Motivated by the recently proposed Kerr/CFT correspondence, we investigate the holographic dual of the extremal and non-extremal rotating linear dilaton black hole in Einstein-Maxwell-Dilaton-Axion Gravity. For the case of extremal black hole, by imposing the appropriate boundary condition at spatial infinity of the near horizon extremal geometry, the Virasoro algebra of conserved charges associated with the asymptotic symmetry group is obtained. It is shown that the microscopic entropy of the dual conformal field given by Cardy formula exactly agrees with Bekenstein-Hawking entropy of extremal black hole. Then, by rewriting the wave equation of massless scalar field with sufficient low energy as the SLL(2, R) x SLR(2, R) Casimir operator, we find the hidden conformal symmetry of the non-extremal linear dilaton black hole, which implies that the non-extremal rotating linear dilaton black hole is holographically dual to a two dimensional conformal field theory with the non-zero left and right temperatures. Furthermore, it is shown that the entropy of non-extremal black hole can be reproduced by using Cardy formula.
Resumo:
A fascinating 3D polycatenane-like metal-organic framework with two kinds of helical chains was reported, in which the helical chains exhibit multiple interweaving modes based on the unusual 2D -> 2D parallel -> 3D parallel interpenetration.
Resumo:
A wet chemical approach is used successfully to produce nanostructured Au material by the reduction of sulfonated polyaniline (SPANI) nanotubes. The Au nanostructures obtained are composed of single crystal Au nanoplates, which are aggregated layer-by-layer into stacks or edge-on-face into clusters at various conditions. The Au nanoplate diameter and thickness can be conveniently controlled in the range of 100 nm to 2 mu m and 10 to 30 nm, respectively, with no accompanying single Au nanoparticles being observed. The formation of the Au nanostructures was controlled by the degradation of SPANI. The gradually and slowly released segments of SPANI served as the reductant during the growth of the 2D Au nanostructures.
Resumo:
A novel organic-inorganic hybrid compound [Cu(phen)](2)[(VV4As2O19)-V-IV-As-V-O-V].0.5H(2)O 1 has been hydrothermally synthesized. Its structure, determined by single crystal X-ray diffraction, exhibits an unusual two-dimensional arsenic vanadate layered network grafted with the [Cu(phen)](2+) complex. The chelating phen ligands project perpendicularly beyond the inorganic layer. Variable temperature magnetic susceptibility studies indicate that both ferro- and antiferro-magnetic interactions exist in 1.
Resumo:
A new centrosymmetrical heterotrinuclear complex, {[Cu(oxbe)](2)Co(H2O)(2)}.2DMF.DMA with 2D supramolecular structure, has been obtained by the self-assembly of a dissymmetrical building block [Cu(oxbe)](-) with bivalent metal ion Co2+, where H(3)oxbe is dissymmetrical ligand N-benzoato-N'-(2-aminoethyl)oxamido, DMF = dimethylformamide, DMA = dimethylamine. Its structure was determined by single crystal X-ray analysis. The molecular structure is centrosymmetrical with the cobalt atom lying on an inversion center. Through the hydrogen bonds and d-pi stacking interactions, a 2D supramolecular structure is formed. This study exemplifies a new method for the assembly of supramolecular structure using a dissymmetrical brick. Magnetic susceptibility measurements (5-300 K) indicate that the central cobalt and terminal copper metal ions are antiferromagnetically coupled with J = -23.1 cm(-1).
Resumo:
The oxamido-bridged heterobinuclear copper(II)-nickel(II) complex, [Cu(oxbe)Ni(phen)(2)]ClO4.3H(2)O (1) and homotrinuclear nickel(11) complex {[Ni(oxbe)](2)Ni(H2O)(2)}.2.5DMF (2) have been synthesized and characterized by means of elemental analysis, IR, EPR. and electronic spectra and magnetic susceptibility, where H(3)oxbe is dissymmetrical ligand N-benzoato-N'-(2-aminoethyl)ox-amido, phen = 1.10-phenanthroline, DMF = dimethylformamide. Complex I has an extended oxamido-bridged structure consisting of planar copper(II) and octahedral nickel(II) ions. The chi(M) and mu(eff) versus T plots of 1 is typical of an antiferromagnetically coupled Cu(II)-Ni(II,) pair with a spin-doublet ground state, and magnetic analysis leads to J = -57.1 cm(-1). The molecular structure of 2 is centrosymmetrical, with one octahedral nickel atom lying at an inversion center and two terminal Ni(II) atoms in approximately square planar environment. Through the hydrogen bonds and pi- pi stacking interactions, a 2D supramolecular structure is formed.
Resumo:
The effect of rare-earth ion Eu3+ on hemoglobin (Hb) was studied by using two-dimensional Raman correlation spectroscopy. The results show that with the variation of Eu3+ concentrations as perturbation, the oxidation state of Hb and its spin state are both sensitive to the perturbation. Eu3+ added to Hb affects the oxidation and spin state synchronously. The four structure-sensitive bands of Hb are more accessible to the Eu3+ than other bands.
Resumo:
The efficient synthesis of 5-(5-bromovaleramido)-1,10-phenanthroline, 5-(6-bromohexanamido)-1,10-phenanthroline, and 5-(11-bromoundecanamido)-1,10-phenanthroline are described, which reacted with cis-Ru(bpy)(2)Cl-2. 2H(2)O and sodium hexafluorophosphate to form Ru(bpy)(2)[phen-NHCO(CH2)(n)Br](PF6)(2) (n = 4, 5 or 10; phen = 1,10-phenanthroline). The intricate H-1 NMR spectra at low field of these complexes were completely assigned in virtue of H-1-H-1 COSY technique. Cyclic voltammetry was used to study electrochemical behaviours of these complexes, and their luminescent properties were investigated with fluorescent spectra.