42 resultados para Elman network
Resumo:
MicroRNAs (miRNAs) are endogenous similar to 22 nucleotide noncoding RNAs that regulate the expression of complementary messenger RNAs (mRNAs). Thousands of miRNA genes have been found in diverse species, and many of them are highly conserved. With the mi
Glycine uptake regulates hippocampal network activity via glycine receptor-mediated tonic inhibition
Resumo:
Functional glycine receptors (GlyRs) are enriched in the hippocampus, but their role in hippocampal function remains unclear. Since the concentration of ambient glycine is determined by the presence of powerful glycine transporter (GlyT), we blocked the r
Resumo:
Sequence analysis of the mitochondrial genome has become a routine method in the study of mitochondrial diseases. Quite often, the sequencing efforts in the search of pathogenic or disease-associated mutations are affected by technical and interpretive pr
Resumo:
A recurrent artificial neural network was used for 0-and 7-days-ahead forecasting of daily spring phytoplankton bloom dynamics in Xiangxi Bay of Three-Gorges Reservoir with meteorological, hydrological, and limnological parameters as input variables. Daily data from the depth of 0.5 m was used to train the model, and data from the depth of 2.0 m was used to validate the calibrated model. The trained model achieved reasonable accuracy in predicting the daily dynamics of chlorophyll a both in 0-and 7-days-ahead forecasting. In 0-day-ahead forecasting, the R-2 values of observed and predicted data were 0.85 for training and 0.89 for validating. In 7-days-ahead forecasting, the R-2 values of training and validating were 0.68 and 0.66, respectively. Sensitivity analysis indicated that most ecological relationships between chlorophyll a and input environmental variables in 0-and 7-days-ahead models were reasonable. In the 0-day model, Secchi depth, water temperature, and dissolved silicate were the most important factors influencing the daily dynamics of chlorophyll a. And in 7-days-ahead predicting model, chlorophyll a was sensitive to most environmental variables except water level, DO, and NH3N.
Resumo:
The paper demonstrates the nonstationarity of algal population behaviors by analyzing the historical populations of Nostocales spp. in the River Darling, Australia. Freshwater ecosystems are more likely to be nonstationary, instead of stationary. Nonstationarity implies that only the near past behaviors could forecast the near future for the system. However, nonstionarity was not considered seriously in previous research efforts for modeling and predicting algal population behaviors. Therefore the moving window technique was incorporated with radial basis function neural network (RBFNN) approach to deal with nonstationarity when modeling and forecasting the population behaviors of Nostocales spp. in the River Darling. The results showed that the RBFNN model could predict the timing and magnitude of algal blooms of Nostocales spp. with high accuracy. Moreover, a combined model based on individual RBFNN models was implemented, which showed superiority over the individual RBFNN models. Hence, the combined model was recommended for the modeling and forecasting of the phytoplankton populations, especially for the forecasting.
Resumo:
A radial basis function neural network was employed to model the abundance of cyanobacteria. The trained network could predict the populations of two bloom forming algal taxa with high accuracy, Nostocales spp. and Anabaena spp., in the River Darling, Australia. To elucidate the population dynamics for both Nostocales spp. and Anabaena spp., sensitivity analysis was performed with the following results. Total Kjeldahl nitrogen had a very strong influence on the abundance of the two algal taxa, electrical conductivity had a very strong negative relationship with the population of the two algal species, and flow was identified as one dominant factor influencing algal blooms after a scatter plot revealed that high flow could significantly reduce the algal biomass for both Nostocales spp. and Anabaena spp. Other variables such as turbidity, color, and pH were less important in determining the abundance and succession of the algal blooms.
Resumo:
We describe a reconfigurable binary-decision-diagram logic circuit based on Shannon's expansion of Boolean logic function and its graphical representation on a semiconductor nanowire network. The circuit is reconfigured by using programmable switches that electrically connect and disconnect a small number of branches. This circuit has a compact structure with a small number of devices compared with the conventional look-up table architecture. A variable Boolean logic circuit was fabricated on an etched GaAs nanowire network having hexagonal topology with Schottky wrap gates and SiN-based programmable switches, and its correct logic operation together with dynamic reconfiguration was demonstrated.
Resumo:
The alternate combinational approach of genetic algorithm and neural network (AGANN) has been presented to correct the systematic error of the density functional theory (DFT) calculation. It treats the DFT as a black box and models the error through external statistical information. As a demonstration, the AGANN method has been applied in the correction of the lattice energies from the DFT calculation for 72 metal halides and hydrides. Through the AGANN correction, the mean absolute value of the relative errors of the calculated lattice energies to the experimental values decreases from 4.93% to 1.20% in the testing set. For comparison, the neural network approach reduces the mean value to 2.56%. And for the common combinational approach of genetic algorithm and neural network, the value drops to 2.15%. The multiple linear regression method almost has no correction effect here.
Resumo:
For realization of hexagonal BDD-based digital systems, active and sequential circuits including inverters, flip flops and ring oscillators are designed and fabricated on GaAs-based hexagonal nanowire networks controlled by Schottky wrap gates (WPGs), and their operations are characterized. Fabricated inverters show comparatively high transfer gain of more than 10. Clear and correct operation of hexagonal set-reset flip flops (SR-FFs) is obtained at room temperature. Fabricated hexagonal D-type flip flop (D-FF) circuits integrating twelve WPG field effect transistors (FETs) show capturing input signal by triggering although the output swing is small. Oscillatory output is successfully obtained in a fabricated 7-stage hexagonal ring oscillator. Obtained results confirm that a good possibility to realize practical digital systems can be implemented by the present circuit approach.
Resumo:
A simple method for analyzing the effects of TO packaging network on the high-frequency response of photodiode modules is presented. This method is established based on the relations of the scattering parameters of the packaging network, photodiode chip, and module. It is shown that the results obtained by this method agree well with those obtained by the conventional comparison method. The proposed method is much more convenient since only the electrical domain measurements are required. (C) 2008 Wiley Periodicals, Inc.
Resumo:
In this paper, a protection scheme for transmitters in wavelength-division-multiplexing passive optical network (WDM-PON) has been proposed and demonstrated. If any downstream transmitter encounters problems at the central office (CO), the interrupted communication can be restored immediately by injecting a Fabry-Perot laser diode (FP-LD) with the upstream lightwave corresponding to the failure transmitter. Compared with the conventional methods, this proposed architecture provides a cost-effective and reliable protection scheme employing a common FP-LD. In the experiment, a 1 36 protection capability was implemented with a 2.5 Gbit/s downstream transmission capability. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper presents an two weighted neural network approach to determine the delay time for a heating, ventilating and air-conditioning (HVAC) plan to respond to control actions. The two weighted neural network is a fully connected four-layer network. An acceleration technique was used to improve the General Delta Rule for the learning process. Experimental data for heating and cooling modes were used with both the two weighted neural network and a traditional mathematical method to determine the delay time. The results show that two weighted neural networks can be used effectively determining the delay time for AVAC systems.
Resumo:
This paper presents a systematic description of the methods for calibrating microwave network analyzer and test fixtures, and discusses the problems arising in the calibration. The general criteria for choosing calibration standards and corresponding algorithms are discussed and suggestions to overcome these problems and improve the calibration accuracy are also given. It has been found that for reciprocal test fixtures, the four equations obtained with the thru standard can be used at the same time. Meanwhile, the calibration accuracy can be improved. It has been shown that using the same calibration procedures but different algorithms may lead to the occurrence of frequency limitation.
Resumo:
In this paper, we constructed a Iris recognition algorithm based on point covering of high-dimensional space and Multi-weighted neuron of point covering of high-dimensional space, and proposed a new method for iris recognition based on point covering theory of high-dimensional space. In this method, irises are trained as "cognition" one class by one class, and it doesn't influence the original recognition knowledge for samples of the new added class. The results of experiments show the rejection rate is 98.9%, the correct cognition rate and the error rate are 95.71% and 3.5% respectively. The experimental results demonstrate that the rejection rate of test samples excluded in the training samples class is very high. It proves the proposed method for iris recognition is effective.