69 resultados para ENDOTHELIUM-DEPENDENT RELAXATION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The temperature-dependent photoluminescence (PL) properties of InAs/GaAs self-organized quantum dots (QDs) have been investigated at high excitation power. The fast redshift of the ground-state and the first excited-state PL energy with increasing temperature was observed. The temperature-dependent linewidth of the QD ground state with high carrier density is different from that with low carrier density. Furthermore, we observed an increasing PL intensity of the first excited state of QDs with respect to that of the ground state and demonstrate a local equilibrium distribution of carriers between the ground state and the first excited state for the QD ensemble at high temperature (T > 80 K). These results provide evidence for the slowdown of carrier relaxation from the first excited state to the ground state in InAs/GaAs quantum dots.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using Raman spectroscopy we have analysed the strain status of GaN films grown on sapphire substrates by NH3 source molecular beam epitaxy (MBE). In addition to the expected compressive biaxial strain, in some cases GaN films grown on c-face sapphire substrates suffer from serious tensile biaxial strain. This anomalous behaviour has been well interpreted in terms of interstitial hydrogen-dependent lattice dilation. The hydrogen concentration in the films is measured by nuclear reaction analysis (NRA). With increasing hydrogen incorporation, the residual compressive biaxial strain is first further relaxed, and then turns into tensile strain when the hydrogen contaminant exceeds a critical concentration. The hydrogen incorporation during the growth process is found to be growth-rate dependent, and is supposed to be strain driven. We believe that the strain-induced interstitial incorporation is another way for strain relaxation during heteroepitaxy, besides the two currently well known mechanisms: formation of dislocations and growth front roughening.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temperature-dependent modulation characteristics of 1.3 mu m InAs/GaAs quantum dot (QD) lasers under small signals have been carefully studied at various bias currents. Based on experimental observations, it is found that the modulation bandwidth significantly increases when excited state (ES) lasing emerges at high temperature. This is attributed to additional photons emitted by ES lasing which contribute to the modulation response. A rate equation model including two discrete electron energy levels and the level of wetting layer has been used to investigate the temperature-dependent dynamic behavior of the QD lasers. Numerical investigations confirm that the significant jump for the small signal modulation response is indeed caused by ES photons. Furthermore, we identify how the electron occupation probabilities of the two discrete energy levels can influence the photon density of different states and finally the modulation rate. Both experiments and numerical analysis show that the modulation bandwidth of QD lasers at high temperature can be increased by injecting more carriers into the ES that has larger electron state degeneracy and faster carrier's relaxation time than the ground state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have systematically studied the temperature dependent photoluminescence of a self-assembled In(Ga)As/GaAs quantum dot (QD) system with different areal densities from similar to 10(9) to similar to 10(11) cm(-2). Different carrier channels are revealed experimentally and confirmed theoretically via a modified carrier equation model considering a new carrier transfer channel, i.e. continuum states ( CS). The wetting layer is demonstrated to be the carrier quenching channel for the low-density QDs but the carrier transfer channel for the high-density QDs. In particular, for the InGaAs/GaAs QDs with a medium density of similar to 10(10) cm(-2), the CS is verified to be an additional carrier transfer channel in the low temperature regime of 10-60 K, which is studied in detail via our models. The possible carrier channels that act on different temperature regimes are further discussed, and it is demonstrated that density is not a crucial factor in determining the carrier lateral coupling strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The strengthening behavior of particle-reinforced metal-matrix composites (MMCp) is primarily attributed to the dislocation strengthening effect and the load-transfer effect. To account for these two effects in a unified way, a new hybrid approach is developed in this paper by incorporating the geometrically necessary dislocation strengthening effect into the incremental micromechanical scheme. By making use of this hybrid approach, the particle-size-dependent inelastic deformation behavior of MMCp is given. Some comparisons with the available experimental results demonstrate that the present approach is satisfactory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mammalian cells subjected to conditions of spaceflight and the microgravity environment ofspace; manifest a number of alterations in structure and function. Among the most notable changes incells flown on the Space Shuttle are reduced growth activation and decline in growth rate in the totalpopulation. Other changes include chromosomal aberrations, inhibited locomotion, alteredcytokine production, changes in PKC distribution, and increased apoptos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leukocytes roll along the endothelium of postcapillary venules in response to inflammatory and thrombotic processes. The rolling under hydrodynamic shear forces is a first step in directing leukocytes out of the blood stream into sites of inflammation and is mediated by the selectins, a family of extended, modular, and calcium-dependent lectin receptors. The interactions between P-, E-or L-selectins and their count.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many experimental observations have clearly shown that dislocation interaction plays a crucial role in the kinetics of strain relaxation in epitaxial thin films. A set of evolution equations are presented in this article. The key feature of the equations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For this sake, the macroscopic equations of mechanics and the kinetic equations of the microstructural transformations should form a unified set that be solved simultaneously. As a case study of coupling length and time scales, the trans-scale formulation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is obvious that the pressure gradient alone, the axial direction in a pipe flow keeps constant according to the Haoen-Poiseuille equation. However, recent experiments indicated that the distribution of the pressure seemed no longer linear for liquid flows in microtubes driven by high pressure (1-30MPa). Based on H-P equation with slip boundary condition and Bridgman's relation of viscosity vs. static pressure, the nonlinear distribution of pressure along the axial direction is analyzed in this paper. The revised standard Poiseuille number with the effect of pressure-dependent viscosity taken into account agrees well with the experimental results. Therefore, the dependence of the viscosity on the pressure is one of the dominating, factors under high driven pressure, and is represented by an important property coefficient et of the liquid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural relaxation through isothermal annealing at tempertature below glass transition is conducted on Zr46.75Ti8.25Cu7.5Ni10Be27.5 (Vitreloy-4) bulk metallic glass. Defect concentration is correlated with the annealing time t according to differential scanning calorimetry thermalgrams. The effects of structural relaxation on mechanical properties and deformation behaviour are investigated by using instrumented nanoindentation. It is found that as-cast alloy exhibits pronounced serration flow during the loading process of nanoindentation, and the size and number of serrations decrease with the annealing time. The change of the deformation behaviour with structural relaxation is explained using a free volume model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We recently proposed a strain gradient theory to account for the size dependence of plastic deformation at micron and submicron length scales. The strain gradient theory includes the effects of both rotation gradient and stretch gradient such that the rotation gradient influences the material character through the interaction between the Cauchy stresses and the couple stresses; the stretch gradient measures explicitly enter the constitutive relations through the instantaneous tangent modulus. Indentation tests at scales on the order of one micron have shown that measured hardness increases significantly with decreasing indent size. In the present paper, the strain gradient theory is used to model materials undergoing small-scale indentations. A strong effect of including strain gradients in the constitutive description is found with hardness increasing by a factor of two or more over the relevant range behavior. Comparisons with the experimental data for polycrystalline copper and single crystal copper indeed show an approximately linear dependence of the square of the hardness, H 2, on the inverse of the indentation depth, 1/h, I.e., H-2 proportional to 1/h, which provides an important self-consistent check of the strain gradient theory proposed by the authors earlier.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is assumed that both translational and rotational nonequilibrium cross-relaxations play a role simultaneoulsy in low pressure supersonic cw HF chemical laser amplifier. For two-type models of gas flow medium with laminar and turbulent flow diffusion mixing, the expressions of saturated gain spectrum are derived respectively, and the numerical calculations are performed as well. The numerical results show that turbulent flow diffusion mixing model is in the best agreement with the experimental result.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, effect of strain gradient on adiabatic shear instability in particle reinforced metal matrix composites is investigated by making use of the strain gradient dependent constitutive equation developed by Dai et al. [9] and the linear perturbation analysis presented by Bai [10]. The results have shown that the onset of adiabatic shear instability in metal matrix composites reinforced with small particles is more prone to occur than in the composites reinforced with large particles. This means that the strain gradient provides a strong deriving force for onset of adiabatic shear instability in metal matrix composites.