162 resultados para Dye-sensitized solar cells
Resumo:
Six organic dyes with different conjugated linkers such as furan, bifuran, thiophene, bithiophene, selenophene, and biselenophene have been prepared in combination with the dihexyloxy-substituted triphenylamine donor and the cyanoacrylic acid acceptor. In conjunction with an acetonitrile-based electrolyte and a solvent-free ionic liquid electrolyte, these dyes exhibit 6.88-7.77% and 6.39-7.00% efficiencies, respectively. We have demonstrated that furan and selenophene can be employed as building blocks of sensitizers in stable solar cells for the first time. We have also studied the influence of heteroatoms on photocurrents and photovoltages with the aid of quantum calculations and transient photoelectrical decay measurements. Temperature-dependent electrical impedance experiments have shown that a relatively low external quantum efficiency of the dye with biselenophene linker is not related to the charge collection yield in the case of an acetonitrile electrolyte.
Resumo:
We report a heteroleptic ruthenium complex (007) featuring the electron-rich 5-octyl-2,2'-bis(3,4-ethylenedioxythiophene) moiety conjugated with 2,2-bipyridine and exhibiting 10.7% power conversion efficiency measured at the AM1.5G conditions, thanks to the enhanced light-harvesting that is closely related to photocurrent. This C107 sensitizer has an extremely high molar extinction coefficient,of 27.4 x 10(3) M-1 cm(-1) at 559 nm in comparison to its analogue C103 (20.5 x 10(3) M-1 cm(-1) at 550 nm) or Z907 (12.2 x 10(3) M(-1)cm(-1) at 521 nm) with the corresponding 5-hexyl-3,4-ethylenedioxythiopliene- or nonyl-substituted bipyridyl unit. The augmentation of molar extinction coefficients and the bathochromic shift of low-energy absorption peaks along with the pi-conjugation extension are detailed by TD-DFT calculations. The absorptivity of mesoporous titania films grafted with Z907, C103, or C107 sublinearly increases with the molar extinction coefficient of sensitizers, which is consistent with the finding derived from the surface coverage measurements that the packing density of those sensitizers decreases with the geometric enlargement of ancillary ligands.
Resumo:
Highly ordered, vertically oriented TiO2 nanotube arrays were prepared by potentiostatic anodization of titanium on FTO-coated glass substrate and for the first time successfully applied in the fabrication of solid-state dye sensitized solar cells (SSDSCs), giving a power conversion efficiency of 1.67% measured under an irradiation of air mass 1.5 global (AM 1.5 G) full sunlight. Furthermore, 3.8% efficiency was reached with a 2.8 mu m thin TiO2 nanotube array film based on a metal free organic dye using ionic liquid electrolyte.
Resumo:
The ZnO/TiO2 core/shell structure was formed through deposition of a TiO2 coating layer on the hydrothermally fabricated ZnO nanorod arrays through radio frequency magnetron sputtering. The effects of the TiO2 shell's characteristics on the current-voltage behaviors of the core/shell-based dye-sensitized solar cells (CS-DSSC) were investigated. As the rates of injection, transfer, and recombination of electrons of such CS-DSSC were affected significantly by the crystallization, morphology, and continuity of the TiO2 shells, the photovoltaic efficiency was accordingly varied remarkably. In addition, the efficiency was further improved by enhancing the surface area in the core/shell electrode.
Resumo:
This paper describes a new strategy to make a full solid-state, flexible, dye-sensitized solar cell (DSSC) based on novel ionic liquid gel, organic dye, ZnO nanoparticles and carbon nanotube (CNT) thin film stamped onto a polyethylene terephthalate (PET) substrate. The CNTs serve both as the charge collector and as scaffolds for the growth of ZnO nanoparticles, where the black dye molecules are anchored.
Resumo:
A heteroleptic polypyridyl ruthenium complex, cis-Ru(4,4'-bis(5-octylthieno[3,2-b]thiophen-2-yl)-2,2'-bipyridine)(4,4'-dicarboxyl-2,2'-bipyridine)(NCS) 2, with a high molar extinction coefficient of 20.5 x 10(3) M-1 cm(-1) at 553 nm has been synthesized and demonstrated as a highly efficient sensitizer for a dye-sensitized solar cell, giving a power conversion efficiency of 10.53% measured under an irradiation of air mass 1.5 global ( AM 1.5G) full sunlight.
Valence band offset of MgO/TiO2 (rutile) heterojunction measured by X-ray photoelectron spectroscopy
Resumo:
The valence band offset (VBO) of MgO/TiO2 (rutile) heterojunction has been directly measured by Xray photoelectron spectroscopy. The VBO of the heterojunction is determined to be 1.6 +/- 0.3 eV and the conduction band offset (CBO) is deduced to be 3.2 +/- 0.3 eV, indicating that the heterojunction exhibits a type-I band alignment. These large values are sufficient for MgO to act as tunneling barriers in TiO2 based devices. The accurate determination of the valence and conduction band offsets is important for use of MgO as a buffer layer in TiO2 based field-effect transistors and dye-sensitized solar cells.
Resumo:
We report a radio frequency magnetron sputtering method for producing TiO2 shell coatings directly on the surface of ZnO nanorod arrays. ZnO nanorod arrays were firstly fabricated on transparent conducting oxide substrates by a hydrothermal route, and subsequently decorated with TiO2 by a plasma sputtering deposition process. The core/shell nanorods have single-crystal ZnO cores and anatase TiO2 shells. The shells are homogeneously coated onto the whole ZnO nanorods without thickness change. This approach enables us to tailor the thickness of the TiO2 shell for desired photovoltaic applications on a one-nanometer scale. The function of the TiO2 shell as a blocking layer for increasing charge separation and suppression of the surface recombination was tested in dye-sensitized solar cells. The enhanced photocurrent and open-circuit voltage gave rise to increased photovoltaic efficiency and decreased dark current, indicating successful functioning of the TiO2 shell.
Resumo:
Hybrid bulk heterojunction solar cells based on blend of poly(3-hexylthiophene) (P3HT) and TiO2 nanotubes or dye(N719) modified TiO2 nanotubes were processed from solution and characterized to research the nature of organic/inorganic hybrid materials. Compared with the pristine polymer P3HT and TiO2 nanoparticles/P3HT solar cells, the TiO2 nanotubes/P3HT hybrid solar cells show obvious performance improvement, due to the formation of the bulk heterojunction and charge transport improvement. A further improvement in the device performance can be achieved by modifying TiO2 nanotube surface with a standard dye N719 which can play a role in the improvement of both the light absorption and charge dissociation. Compared with the non-modified TiO2 nanotubes solar cells, the modified ones have better power conversion efficiency under 100 mW/cm(2) illumination with 500W Xenon lamp. (C) 2008 Elsevier B. V. All rights reserved.
Resumo:
In this paper, bulk heterojunction photovoltaic devices based on the poly[2-methoxy-5-(3',7'-dimethyloctyloxy)- 1,4-phenylenevinylene] (MDMO-PPV):Bi2S3 nanorods hybrid material were present. To optimize the performance of the devices, the interface modification of the hybrid material that has a significant impact on the exciton dissociation efficiency was studied. An improvement in the device performance was achieved by modifying the Bi2S3 surface with a thin dye layer. Moreover, modifying the Bi2S3 surface with anthracene-9-carboxylic acid can enhance the performance further. Compared with the solar cells with Bi2S3 nanorods hybrid with the MDMO-PPV as the active layer, the anthracene-9carboxylic acid modified devices are better in performance, with the power conversion efficiency higher by about one order in magnitude.
Resumo:
A highly efficient light-trapping structure, consisting of a diffractive grating, a distributed Bragg reflector (DBR) and a metal reflector was proposed. As an example, the proposed light-trapping structure with an indium tin oxide (ITO) diffraction grating, an a-Si:H/ITO DBR and an Ag reflector was optimized by the simulation via rigorous coupled-wave analysis (RCWA) for a 2.0-mu m-thick c-Si solar cell with an optimized ITO front antireflection (AR) layer under the air mass 1.5 (AM1.5) solar illumination. The weighted absorptance under the AM1.5 solar spectrum (A(AM1.5)) of the solar cell can reach to 69%, if the DBR is composed of 4 pairs of a-Si:H/ITOs. If the number of a-Si:H/ITO pairs is up to 8, a larger A(AM1.5) of 72% can be obtained. In contrast, if the Ag reflector is not adopted, the combination of the optimized ITO diffraction grating and the 8-pair a-Si:H/ITO DBR can only result in an A(AM1.5) of 68%. As the reference, A(AM1.5) = 31% for the solar cell only with the optimized ITO front AR layer. So, the proposed structure can make the sunlight highly trapped in the solar cell. The adoption of the metal reflector is helpful to obtain highly efficient light-trapping effect with less number of DBR pairs, which makes that such light-trapping structure can be fabricated easily.
Resumo:
The efficiencies of InxGa1-xN two-junction solar cells are calculated with various bandgap combinations of subcells under AM1.5 global, AM1.5 direct and AM0 spectra. The influence of top-cell thickness on efficiency has been studied and the performance of InxGa1-xN cells for the maximum light concentration of various spectra has been evaluated. Under one-sun irradiance, the optimum efficiency is 35.1% for the AM1.5 global spectrum, with a bandgap combination of top/bottom cells as 1.74 eV/1.15 eV. And the limiting efficiency is 40.9% for the highest light concentration of the AM1.5 global spectrum, with the top/bottom cell bandgap as 1.72 eV/1.12 eV.
Resumo:
Poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) capped PbS quantum dots about 3-6 nm in diameter were synthesized with a novel method. Unlike the synthesis of oleic acid capped PbS quantum dots, the reactions were carried out in solution at room temperature, with the presence of a capping ligand species, MDMO-PPV. The quantum dots were used to fabricate bulk heterojunction solar cells with an indium tin oxide (ITO)/polyethylenedioxythiophene/polystyrenesulphonate (PEDOT: PSS)/MDMO-PPV: PbS/Al structure. Current density-voltage characterization of the devices showed that after the addition of the MDMO-PPV capped PbS quantum dots to MDMO-PPV film, the performance was dramatically improved compared with pristine MDMO-PPV solar cells. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Tin mono-sulphide (SnS) nanoparticles were synthesized by a facile method. Reactions producing narrow size distribution SnS nanoparticles with the diameter of 5.0-10 nm were carried out in an ethylene glycol solution at 150 degrees C for 24 h. Bulk heterojunction solar cells with the structure of indium tin oxide (ITO)/polyethylenedioxythiophene polystyrenesulphonate (PEDOT PSS)/SnS polymer/Al were fabricated by blending the nanoparticles with a conjugated polymer to form the active layer for the first time. Current density-voltage characterization of the devices showed that due to the addition of SnS nanoparticles to the polymer film, the device performance can be dramatically improved, compared with that of the pristine polymer solar cells. (c) 2009 Published by Elsevier B.V.