27 resultados para Drama, Theatre, Performance Art


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we presents the characterization technique of high-speed optoelectronics devices based electrical and optical spectra, which is as important access to the devices performance as the prevalent vector network analyzer (VNA) sweeping method. The measurement of additional modulation of laser and frequency response of photodetector from electrical spectra, and the estimation of the modulation indexes and the chirp parameters of directly modulated lasers based on optical spectra analysis, are given as examples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nano-patterning sapphire substrates technique has been developed for nitrides light-emitting diodes (LEDs) growths. It is expected that the strain induced by the lattice misfits between the GaN epilayers and the sapphire substrates can be effectively accommodated via the nano-trenches. The GaN epilayers grown on the nano-patterned sapphire substrates by a low-pressure metal organic chemical vapor deposition (MOCVD) are characterized by means of scanning electron microscopy (SEM), high-resolution x-ray diffraction (HRXRD) and photoluminescence (PL) techniques. In comparison with the planar sapphire substrate, about 46% increment in device performance is measured for the InGaN/GaN blue LEDs grown on the nano-patterned sapphire substrates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Patterning sapphire substrate can relax the stress in the nitride epilayer, reduce the threading dislocation density, and significantly improve device performance. In this article, a wet-etching method for sapphire substrate is developed. The effect of substrate surface topographies on the quality of the GaN epilayers and corresponding device performance are investigated. The GaN epilayers grown on the wet-patterned sapphire substrates by MOCVD are characterized by means of scanning electrical microscopy (SEM), atomic force microscopy (AFM), high-resolution x-ray diffraction (HRXRD), and photoluminescence (PL) techniques. In comparison with the planar sapphire substrate, about a 22% increase in device performance with light output power of 13.31 mW@20mA is measured for the InGaN/GaN blue LEDs grown on the wet-patterned sapphire substrate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Under high concentration the temperature of photovoltaic solar cells is very high. It is well known that the efficiency and performance of photovoltaic solar cells decrease with the increase of temperature. So cooling is indispensable for a concentrator photovoltaic solar cell at high concentration. Usually passive cooling is widely considered in a concentrator system. However, the thermal conduction principle of concentrator solar cells under passive cooling is seldom reported. In this paper, GaInP/GaAs/Ge triple junction solar cells were fabricated using metal organic chemical vapor deposition technique. The thermal conductivity performance of monolithic concentrator GaInP/GaAs/Ge cascade solar cells under 400X concentration with a heat sink were studied by testing the surface and backside temperatures of solar cells. The tested result shows that temperature difference between both sides of the solar cells is about 1K. A theoretical model of the thermal conductivity and thermal resistance of the GaInP/GaAs/Ge triple junction solar cells was built, and the calculation temperature difference between both sides of the solar cells is about 0.724K which is consistent with the result of practical test. Combining the theoretical model and the practical testing with the upper surface temperature of tested 310K, the temperature distribution of the solar cells was researched.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the ground target detection, classification and sensor fusion problems in distributed fiber seismic sensor network. Compared with conventional piezoelectric seismic sensor used in UGS, fiber optic sensor has advantages of high sensitivity and resistance to electromagnetic disturbance. We have developed a fiber seismic sensor network for target detection and classification. However, ground target recognition based on seismic sensor is a very challenging problem because of the non-stationary characteristic of seismic signal and complicated real life application environment. To solve these difficulties, we study robust feature extraction and classification algorithms adapted to fiber sensor network. An united multi-feature (UMF) method is used. An adaptive threshold detection algorithm is proposed to minimize the false alarm rate. Three kinds of targets comprise personnel, wheeled vehicle and tracked vehicle are concerned in the system. The classification simulation result shows that the SVM classifier outperforms the GMM and BPNN. The sensor fusion method based on D-S evidence theory is discussed to fully utilize information of fiber sensor array and improve overall performance of the system. A field experiment is organized to test the performance of fiber sensor network and gather real signal of targets for classification testing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High power semiconductor lasers have broad applications in the fields of military and industry. Recent advances in high power semiconductor lasers are reviewed mainly in two aspects: improvements of diode lasers performance and optimization of packaging architectures of diode laser bars. Factors which determine the performance of diode lasers, such as power conversion efficiency, temperature of operation, reliability, wavelength stabilization etc., result from a combination of new semiconductor materials, new diode structures, careful material processing of bars. the latest progress of today's high-power diode lasers at home and abroad is briefly discussed and typical data are presented. The packaging process is of decisive importance for the applicability of high-power diode laser bars, not only technically but also economically. The packaging techniques include the material choosing and the structure optimizing of heat-sinks, the bonding between the array and the heat-sink, the cooling and the fiber coupling, etc. The status of packaging techniques is stressed. There are basically three different diode package architectural options according to the integration grade. Since the package design is dominated by the cooling aspect,. different effective cooling techniques are promoted by different package architectures and specific demands. The benefit and utility of each package are strongly dependent upon the fundamental optoelectronic properties of the individual diode laser bars. Factors which influence these properties are outlined and comparisons of packaging approaches for these materials are made. Modularity of package for special application requirements is an important developing tendency for high power diode lasers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In AlGaInP/GaInP multi-quantum well (MQW) lasers, the electron leakage current is a much more serious problem than that in laser diodes with longer wavelength. To further improve the output performance, the leakage current should be analyzed. In this letter, the temperature dependence of electrical derivative characteristics in AlGaInP/GaInP multi-quantum well lasers was measured, and the potential barrier for electron leakage was obtained. With the help of secondary ion mass spectroscopy (SIMS) measurement, theoretical analysis of the potential barrier was presented and compared with the measurement result. The influence of p-cladding doping level and doping profile on the potential barrier was discussed, and this can be helpful in metalorganic chemical vapor deposition (MOCVD) growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optoelectronic packaging has become a most important factor that influences the final performance and cost of the module. In this paper, low microwave loss coplanar waveguide(CPW) on high resistivity silicon(HRS) and precise V groove in silicon substrate were successfully fabricated. The microwave attenuation of the CPW made on HRS with the simple process is lower than 2 dB/cm in the frequency range of 0 similar to 26GHz, and V groove has the accuracy in micro level and smooth surface. These two techniques built a good foundation for high frequency packaging and passive coupling of the optoelectronic devices. Based on these two techniques, a simple high resistivity silicon substrate that integrated V groove and CPW for flip-chip packaging of lasers was completed. It set a good example for more complicate optoelectronic packaging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The narrow stripe selective growth of the InGaAlAs bulk waveguides and InGaAlAs MQW waveguides was first investigated. Flat and clear interfaces were obtained for the selectively grown InGaAlAs waveguides under optimized growth conditions. These selectively grown InGaAlAs waveguides were covered by specific InP layers, which can keep the waveguides from being oxidized during the fabrication of devices. PL peak wavelength shifts of 70 nm for the InGaAlAs bulk waveguides and 73 nm for the InGaAlAs MQW waveguides were obtained with a small mask stripe width varying from 0 to 40 gm, and were interpreted in considering both the migration effect from the masked region (MMR) and the lateral vapor diffusion effect (LVD). The quality of the selectively grown InGaAlAs MQW waveguides was confirmed by the PL peak intensity and the PL FWHM. Using the narrow stripe selectively grown InGaAlAs MQW waveguides, then the buried heterostructure (BH) lasers were fabricated by a developed unselective regrowth method, instead of conventional selective regrowth. The InGaAlAs MQW BH lasers exhibit good performance characteristics, with a high internal differential quantum efficiency of about 85% and an internal loss of 6.7 cm(-1).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate room temperature operation of photonic-crystal distributed-feedback quantum cascade lasers emitting at 4.7 mu m. A rectangular photonic crystal lattice perpendicular to the cleaved facet was defined using holographic lithography. The anticrossing of the index- and Bragg-guided dispersions of rectangular lattice forms the band-edge mode with extended mode volume and reduced group velocity. Utilizing this coupling mechanism, single mode operation with a near-diffractive-limited divergence angle of 12 degrees is obtained for 33 mu m wide devices in a temperature range of 85-300 K. The reduced threshold current densities and improved heat dissipation management contribute to the realization of devices' room temperature operation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymer solar cells have the potential to become a major electrical power generating tool in the 21st century. R&D endeavors are focusing on continuous roll-to-roll printing of polymeric or organic compounds from solution-like newspapers-to produce flexible and lightweight devices at low cost. It is recognized, though, that besides the functional properties of the compounds the organization of structures on the nanometer level-forced and controlled mainly by the processing conditions applied-determines the performance of state-of-the-art polymer solar cells. In such devices the photoactive layer is composed of at least two functional materials that form nanoscale interpenetrating phases with specific functionalities, a so-called bulk heterojunction. In this perspective article, our current knowledge on the main factors determining the morphology formation and evolution is introduced, and gaps of our understanding on nanoscale structure-property relations in the field of high-performance polymer solar cells are addressed. Finally, promising routes toward formation of tailored morphologies are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Al/Ni bilayer cathode was used to improve the electroluminescent (EL) efficiency and stability in N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1' biphenyl 4,4'-dimaine (NPB)/tris-(8-hydroxyquinoline) aluminum (Alq(3))-based organic light-emitting diodes. The device with LiF/Al/Ni cathode achieved a maximum power efficiency of 2.8 lm/W at current density of 1.2 mA/cm(2), which is 1.4 times the efficiency of device with the state-of-the-art LiF/Al cathode. Importantly, the device stability was significantly enhanced due to the utilization of LiF/Al/Ni cathode. The lifetime at 30% decay in luminance for LiF/Al/Ni cathode was extrapolated to 400 It at an initial luminance of 100 cd/m(2), which is 10 times better than the LiF/Al cathode.