121 resultados para Dow Chemical Company.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mathematical model is presented for the numerical simulation of the flow, temperature, and concentration fields in an rf plasma chemical reactor. The simulation is performed assuming chemical equilibrium. The extent of validity of this assumption is discussed. The system considered is the reaction of SiCl4 and NH3 for the production of Si3N4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A kinetic model has been developed for the prediction of the concentration gelds in an rf plasma reactor. A sample calculation for a SiCl4/H2 system is then performed. The model considers the mixing processes along with the kinetics of seven reactions involving the decomposition of these reactants. The results obtained are compared to those assuming chemical equilibrium. The predictions indicate that an equilibrium assumption will result in lower predicted temperature fields in the reactor. Furthermore, for the chemical system considered here, while differences exist between the concentration fields obtained by the two models, the differences are not substantial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A two-dimensional simplified model of an HF chemical laser is introduced. Using an implicit finite difference scheme, the solution of two adjacent parallel streams with diffusion mixing and chemical reaction is generated. A contour of mixing and reaction boundary is obtained without presupposition. The distribution of the HF(v) concentrations, gas temperature and the optical small signal gain (alpha sub V, J) on the flowing plane (X, Y) are presented. Compared with the solution solved directly from a set of Navier-Stokes equations, the results of these two methods agree with each other qualitatively. The influences of the different velocity, temperature (T sub 0) and composition of the two streams on the small signal gain after the nozzle exit are investigated. It is interesting that for larger J with a fixed v, the peaks of alpha sub v-T sub 0 profiles move towards higher T sub 0. The computing method is simple and only a short computing time is needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is proposed in this paper that we can use frequency-modulated (FM) lasers to realize bond-selective chemical reactions or to raise the efficiency of molecular isotope separation. Examples are given for HF molecule and the C–H bond in some hydrocarbons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theoretical model for gain saturation in gas flow and chemical lasers is presented. The theory is applicable to all possible numerical values of τ/τc, where τ is the characteristie flow time for the flowing gas to move across the laser action region and τc is the characteristic collision relaxation time. The saturation effects of the convection and the "source flow" of the inverted population are revealed. A general relation of gain coefficient and some new gain saturation laws are obtained. For the special case of τ/τc1, the present theoretical results agree with the experimental results on the "anomalous" saturation phenomena in the supersonic diffusion HF chemical laser determined recently by Gross and Coffer[8]. The theory also agrees with the measured results of saturation intensity varying with τ/τc in gas flow CO2 lasers[7]. For the special case of τ/τc1, the present theory is consistent with both the standard theory[1] for gas lasers where the gas has no macroscopic motion and the known gain saturation theory[2-5] for gas flow and chemical lasers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we deduce the formulae for rate-constant of microreaction with high resolving power of energy from the time-dependent Schrdinger equation for the general case when there is a depression on the reaetional potential surface (when the depression is zero in depth, the case is reduced to that of Eyring). Based on the assumption that Bolzmann distribution is appropriate to the description of reactants, the formula for the constant of macrorate in a form similar to Eyring's is deduced and the expression for the coefficient of transmission is given. When there is no depression on the reactional potential surface and the coefficient of transmission does not seriously depend upon temperature, it is reduced to Eyring's. Thus Eyring's is a special case of the present work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper an analysis of the kinetic theory of the continuous-wave flow chemical lasers(CWFCL) is presented with emphasis being laid on the effects of inhomogeneous broadeningon CWFCL's performance. The results obtained are applicable to the case where laser fre-quency is either coincident or incoincident with that of the eenter of the line shape. This rela-tion has been,compared with that of the rate model in common use. These two models are almostidentical as the broadening parameter η is larger than 1. The smaller the value of η, thegreater the difference between the results of these two models will be. For fixed η, the dif-ferences between fhe results of the two models increase with the increase of the frequencyshift parameter ξ. When η is about less than 0.2. the kinetic model can predict exactly the in-homogeneous broadening effects,while the rate model cannot.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High temperature chemical non-equilibrium phenomena have a great effect on the flow field around a reentry vehicle. A set of three dimensional Navier-Stokes equations have been solved by implicit finite volume NND scheme. Both ideal gas viscous flow and chemical non-equilibrium flow are calculated for a spherical-cone at a small angle of attack. The results of the two flows have been compared and the effect of chemical non-equilibrium has been analyzed. The effect of wall material's properties, such as catalysis and radiation were studied. The results are in good agreement with the referenced paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A full two-fluid model of reacting gas-particle flows with an algebraic unified second-order moment (AUSM) turbulence-chemistry model is used to simulate Beijing coal combustion and NOx formation. The sub-models are the k-epsilon-kp two-phase turbulence model, the EBU-Arrhenius volatile and CO combustion model, the six-flux radiation model, coal devolatilization model and char combustion model. The blocking effect on NOx formation is discussed. In addition, the chemical equilibrium analysis is used to predict NOx concentration at different temperature. Results of CID simulation and chemical equilibrium analysis show that, optimizing air dynamic parameters can delay the NOx formation and decrease NOx emission, but it is effective only in a restricted range. In order to decrease NOx emission near to zero, the re-burning or other chemical methods must be used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modified simplified rate equation (RE) model of flowing chemical oxygen-iodine laser (COIL), which is adapted to both the condition of homogeneous broadening and inhomogeneous broadening being of importance and the condition of inhomogeneous broadening being predominant, is presented for performance analyses of a COIL. By using the Voigt profile function and the gain-equal-loss approximation, a gain expression has been deduced from the rate equations of upper and lower level laser species. This gain expression is adapted to the conditions of very low gas pressure up to quite high pressure and can deal with the condition of lasing frequency being not equal to the central one of spectral profile. The expressions of output power and extraction efficiency in a flowing COIL can be obtained by solving the coupling equations of the deduced gain expression and the energy equation which expresses the complete transformation of the energy stored in singlet delta state oxygen into laser energy. By using these expressions, the RotoCOIL experiment is simulated, and obtained results agree well with experiment data. Effects of various adjustable parameters on the performances of COIL are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, an AC plasma arc reactorwithworkinggasofhydrogen is applied to destruct chemicalagents. The temperature attains 6000℃ in the arc area and over 2000℃ in the other space of the crucible. The Arsenic (As) contained chemical agent -Adams (DM) used in the experiment, was added into the plasmareactorwith the additives: Fe, CaO, and SiO_2, etc. Pyrolysis and destructionofchemicalagents occurs very quickly in the high-temperature reactor. Gaseous hydrogen was injected into the reactor to form a reductive environment, to reduce the formation of As_2O_3 etc. In the bottom of the crucible, the solid residues of toxicant and additives were melted and formed as vitrified slag. The off-gas was treated by a wet scrubber. The amounts of arsenic distributed in the off-gas, vitrified slag, waste water and solids (soot) were measured. The result shows DM is completely destructed in the plasmareactor. The Arsenic content in the off-gas, vitrified slag, waste water and soot are 0.052 mg/l, 3.0%, 10.44 mg/l, and 5.1% respectively, which will be disposed as the pollutant matters. The results show that the plasma technology is an environmentally friendly technology to destruct chemicals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of the free-stream thermo-chemical state on the test model flow field in the high-enthalpy tunnel are studied numerically. The properties of the free-stream, which is in thermo-chemical non-equilibrium, are determined by calculating the nozzle flow field. A free-stream with total enthalpy equal to the real one in the tunnel while in thermo-chemical equilibrium is constructed artificially to simulate the natural atmosphere condition. The flow fields over the test models (blunt cone and Apollo command capsule model) under both the non-equilibrium and the virtual equilibrium free-stream conditions are calculated. By comparing the properties including pressure, temperature, species concentration and radiation distributions of these two types of flow fields, the effects of the non-equilibrium state of the free-stream in the high-enthalpy shock tunnel are analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wettability alternation phenomena is considered one of the most important enhanced oil recovery (EOR) mechanisms in the chemical flooding process and induced by the adsorption of surfactant on the rock surface. These phenomena are studied by a mesoscopic method named as dissipative particle dynamics (DPD). Both the alteration phenomena of water-wet to oil-wet and that of oil-wet to water-wet are simulated based on reasonable definition of interaction parameters between beads. The wetting hysteresis phenomenon and the process of oil-drops detachment from rock surfaces with different wettability are simulated by adding long-range external forces on the fluid particles. The simulation results show that, the oil drop is liable to spread on the oil-wetting surface and move in the form of liquid film flow, whereas it is likely to move as a whole on the water-wetting surface. There are the same phenomena occuring in wettability-alternated cases. The results also show that DPD method provides a feasible approach to the problems of seepage flow with physicochemical phenomena and can be used to study the mechanism of EOR of chemical flooding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasma-arc technology was developed to dispose of chemical wastes from a chemical plant by the Institute of Mechanics, Chinese Academy of Sciences (CAS-IMECH). A pilot plant system with this technology was constructed to destroy two types of chemical wastes. The system included shredding, mixing, and feeding subsystems, a plasma-arc reactor of 150 kW, an off-gas burning subsystem, and a scrubbing subsystem. The additives (CaO, SiO2, and Fe) were added into the reactor to form vitrified slag and capture the hazardous elements. The molten slag was quickly quenched to form an amorphous glassy structure. A direct current (DC) experimental facility of 30kW with plasma-arc technology was also set up to study the pyrolysis process in the laboratory, and the experimental results showed the cooling speed is the most important factor for good vitrified structure of the slag. According to previous tests, the destruction and removal efficiency (DRE) for these chemical wastes was more than 99.999%, and the polychlorinated biphenyls (PCBs) concentration in the solid residues was in the range of 1.28 to 12.9mg/kg, which is far below the Chinese national emission limit for the hazardous wastes. A simplified electromagneto model for numerical simulation was developed to predict the temperature and velocity fields. This model can make satisfactory maximum temperature and velocity distributions in the arc region, as well as the results by the magneto hydrodynamic approach.