26 resultados para Doença de Fabry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To improve the accuracy of measured gain spectra, which is usually limited by the resolution of the optical spectrum analyzer (OSA), a deconvolution process based on the measured spectrum of a narrow linewidth semiconductor laser is applied in the Fourier transform method. The numerical simulation shows that practical gain spectra can be resumed by the Fourier transform method with the deconvolution process. Taking the OSA resolution to be 0.06, 0.1, and 0.2 nm, the gain-reflectivity product spectra with the difference of about 2% are obtained for a 1550-nm semiconductor laser with the cavity length of 720 pm. The spectra obtained by the Fourier transform method without the deconvolution process and the Hakki-Paoli method are presented and compared. The simulation also shows that the Fourier transform method has less sensitivity to noise than the Hakki-Paoli method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the packaging of optoelectrome device, a problem always met is the instability of output power. The main effect causing this problem, Fabry-Perot interference, is discussed in this paper. Both theoretical analysis and experimental test are carried out and in good agreement. As an example of avoiding the disadvantage of Fabry-Perot interference, the packaging process of Silicon-on-Insulator (SOI) based Variable Optical Attenuator(VOA) is shown at last.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Micro Fabry-Perot (F-P) interferometers (MFPIs) are machined in a single-mode fiber (SMF) and a photonic crystal fiber (PCF) by using a near-infrared femtosecond laser, respectively. The strain and temperature characteristics of the two MFPIs with an identical cavity length are investigated and the experimental results show that the strain sensitivity of the PCF-based MFPI is smaller than that of the SMF-based MFPI due to their different waveguide structures, while the two MFPIs have close temperature sensitivities which are much smaller than that of an in-line SMF etalon sensor reported previously. These MFPIs in silica fibers are compact, stable, inexpensive, capable for mass-production and easy fabrication, offering great potentials for wide sensing applications. (c) 2007 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The asymmetric Fabry-Perot (ASFP) mode position with the thickness of different index coating layer is calculated. The reason for the blue shift of the ASFP mode with the increasing thickness of low index coating layer is analyzed and this phenomenon is observed in experiments. With the wet-etching method, the ASFP mode can be tuned to the desired wavelength and thus the deviation of growth can be compensated. This method is used to improve the contrast ratio of modulators. With the ASFP mode located at different positions relative to the unbiased e-hh peak, different modulation characteristics are demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

制作了一种平顶响应的热光可调谐滤波器,通过用湿法腐蚀方法将半波长的共振腔分成具有不同光学厚度的两部分,并且使入射光照射到两部分的面积基本上相等,实现平顶响应特性.对该滤波器的输出响应进行检测,实验结果与理论模拟符合,相对透射率的极大值与极小值间的起伏度小于0.01.与实现平顶响应的其他方法相比,本滤波器器件的制作工艺简单,平顶性能优越,容易与其他有源和无源光子器件集成.还给出了制作几十μm量级的共振腔实现平顶窄带响应的热光可调谐滤波器的机理,其输出响应的起伏度小于0.02,3 dB带宽小于1 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 1.55μm Fabry-Perot (F-P) thermo-optical tunable filter is fabricated. The cavity is made of amorphous silicon (a-Si) layer grown by electron-beam evaporation technique. Due to the excellent thermo-optical property of a-Si, the refractive index of the F-P cavity will be changed by heating; the transmittance resonant peak will therefore shift substantially. The measured tuning range is 12nm, FWHM (full-width-at-half-maximum) of the transmission peak is 9nm, and heating efficiency is 0.1K/mW. The large FWHM is mainly due to the non-ideal coating deposition and mirror undulation. Possible improvements to increase the efficiency of heating are suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fitting process is used to measure the cavity loss and the quasi-Fermi-level separation for Fabry- Perot semiconductor lasers. From the amplified spontaneous emission (ASE) spectrum, the gain spectrum and single-pass ASE obtained by the Cassidy method are applied in the fitting process. For a 1550nm quantum well InGaAsP ridge waveguide laser, the cavity loss of about ~24cm~(-1) is obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel system design that can generate the optimized wavelength-tunable optical pulse streams from an uncooled gain-switched Fabry-Perot semiconductor laser using an optical amplifier as external light source. The timing jitter of gain-switched laser has been reduced from about 3 ps to 600 fs and the pulse width has been optimized by using our system. The stability of the system was also experimentally investigated. Our results show that an uncooled gain-switched FP laser system can feasibly produce the stable optical pulse trains with pulse width of 18 ps at the repetition frequency of 5 GHz during 7 h continuous working. We respectively proved the system feasibility under 1 GHz, 2.5 GHz and 5 GHz operation. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distributed Bragg reflectors (DBR) with different reflection wavelengths were designed, and were used to fabricate microcavity organic light-emitting diodes (OLEDs) based on tris(8-hydroxyquinoline)-aluminum (Alq(3)) as the emitter and N, N'-di(naphthalene-1-yl)-N, N'-diphenyl-benzidine (NPB) as the hole-transporting layer. The microcavity was composed of DBR dielectric mirror and metal electrode aluminum (Al) mirror. Some effects of vertical optical Fabry-Perot microcavity on spontaneous emission in OLEDs were investigated. Spectral narrowing, enhancement of emitting intensity and anglular dependence of emission were observed due to the microcavity effect. It was found experimentally that the utilization of DBR is a better method to adjust the emissive mode in the resonant cavity in OLEDs well. Thus the realization of different color light emission becomes possible by the combination of carefully designed microcavity and electroluminescent organic semiconductors in a single LED.