40 resultados para Disfunção da ATM
Resumo:
本论文应用X射线和12C6+离子对不同肿瘤细胞:HL-60、K562、SMMC-7721和HepG2进行辐照,用克隆形成率和四唑盐比色法(MTT)测定四种细胞的辐射敏感性;通过流式细胞术测定细胞周期分布、细胞凋亡、ATM和SMC1蛋白的表达变化。应用免疫细胞化学法与流式检测相结合研究了γ-H2AX蛋白表达的时间效应与剂量效应之间的关系。实验结果表明,四种细胞的辐射敏感性由强到弱依次为HL-60>K562>SMMC-7721>HepG2。即ATM表达量越低的细胞对辐射越敏感,周期阻滞水平越低,细胞凋亡越明显,但辐照后ATM蛋白的表达无显著增加,说明ATM的表达量和功能状态与细胞辐射敏感性有关,但其表达水平不能完全反映ATM蛋白激酶的活性。对ATM表达量差异最显著的HepG2和HL-60细胞来说,辐照前SMC1的表达水平与细胞S期的含量没有直接关系,辐照后SMC1蛋白的上调表达在S期阻滞修复中发挥明显的作用。辐照后1h,HL-60和HepG2细胞的H2AX磷酸化水平随吸收剂量的增加呈线性正相关,但曲线斜率与细胞辐射抗性的差异没有直接的联系。γ-H2AX的消失率与存活分数存在良好的相关性,HepG2细胞抗辐射能力强,这一时间短,HL-60细胞抗辐射能力弱,这一时间长。可以用γ-H2AX的消失速率来评估细胞的辐射敏感性。 以SMMC-7721细胞为同步化细胞模型发现,与其它同步化方法相比,步进电机旋转同步化培养法对细胞损伤最小,同步化效率最高,达到M期>90%,GO/G1期>80%,S期>60%,G2/M>50%。同种射线辐照,GO/G1期SMMC-7721细胞的存活相对G2/M期来说较高。12C6+离子辐照明显减小了二者敏感度的差异性
Resumo:
本文旨在分别研究重离子束及MMC在诱导细胞的DNA损伤效应中一些具体的分子机制,为治疗的进行以及相关辅助药物的开发提供理论依据。本文探索的重点有两个,第一个是重离子束辐射诱导的DNA损伤效应及p53在其中的激活,第二个是MMC诱导的DNA损伤效应及p53和BRCA1、H2AX等分子在其中的角色。 1. 12C6+离子束诱导HeLa细胞DNA损伤效应为了研究HeLa细胞经过12C6+ 束辐照之后的DNA损伤效应,及这个过程中p53激活的分子机制。我们运用中性单细胞电泳技术,检测了HeLa细胞经过4Gy 12C6+ 束辐照0h、3h、6h和12h之后DNA的损伤情况,以及0.5Gy、1Gy、2Gy和4Gy 12C6+ 束辐照0h后的DNA损伤情况。同时运用细胞生长实时监测仪监测了HeLa细胞在经过0Gy、0.5Gy和1Gy 12C6+ 束辐照之后的生长变化,并运用AO/EB双染检测了辐照24小时后的凋亡情况。另外,利用8mmol/L的caffeine(抑制ATM和ATR)和20μmol/L的wortmannin(抑制ATM和DNA-PK)处理HeLa细胞后再进行1Gy 12C6+ 束辐照,通过western blot检测p53的表达。结果显示,12C6+ 束辐照可造成HeLa细胞的DNA损伤,损伤随剂量升高而升高但随时间降低;并诱导HeLa细胞发生凋亡;而且辐照后p53表达升高,但经过caffeine或者wortmannin预先处理的细胞p53均没有显著升高。我们的结论是:12C6+ 束辐照可造成HeLa细胞的DNA损伤并诱导损伤修复及凋亡等效应,损伤效应相关的分子p53被激活,并且激活依赖于ATM。 2. MMC诱导的DNA损伤效应在这一部分研究中,首先,我们利用与上面相同的研究方法,探讨了p53在MMC诱导的DNA损伤效应中的激活情况,结果显示,MMC诱导的DNA损伤效应并不依赖于p53。另外,我们还探讨了, BRCA1在FANCD2的γ-H2AX依赖性转移中的作用。MMC可造成DNA的ICL(interstrand cross-link)损伤,ICL可通过FA(Fanconi Anemia)通路进行修复。FANCD2是FA通路的核心分子,在DNA产生ICL时被各种分子修饰然后转移到损伤部分,这个过程的涉及到ATR、γ-H2AX及BRCA1等,本文试图探讨BRCA1在其中的作用方式。研究中,我们监测了不同处理(包括对照、caffeine(可抑制ATR)、MMC及MMC +caffeine)的HCC1937(BRCA1缺陷型)和MCF7(BRCA1野生型)细胞的生长;并用Western blot检测MMC处理之后HCC1937细胞γ-H2AX的表达情况。结果表明,MMC和caffeine均可以抑制HCC1937的生长,但caffeine和MMC+caffeine的抑制效果是一样的;MMC和caffeine均可以抑制MCF7的生长,且MMC+caffeine处理比仅进行caffeine处理的抑制作用强;MMC处理之后,HCC1937的γ-H2AX表达显著升高。我们的结论是,在FANCD2的γ-H2AX依赖性转移中,H2AX的磷酸化并不依赖于BRCA1,不过,BRCA1和ATR应该参与一个相同的分子事件,可能是FANCD2的磷酸化。这个有待进一步的实验验证
Resumo:
A 2-kW-class chemical oxygen-iodine laser (COIL) using nitrogen buffer gas has been developed and tested since industrial applications of COIL devices will require the use of nitrogen as the buffer gas. The laser, with a gain length of 11.7 cm, is energized by a square pipe-array jet-type singlet oxygen generator (SPJSOG) and employs a nozzle bank with a designed Mach number of 2.5. The SPJSOG has advantages over the traditional plate-type JSOG in that it has less requirements on basic hydrogen peroxide (BHP) pump, and more important, it has much better operational stability. The SPJSOG without a cold trap and a gas-liquid separator could provide reliable operations for a total gas flow rate up to 450 mmol/s and with a low liquid driving pressure of around 0.7 atm or even lower. The nozzle bank was specially designed for a COIL using nitrogen as the buffer gas. The cavity was designed for a Mach number of 2.5, in order to provide a gas speed and static temperature in the cavity similar to that for a traditional COIL with helium buffer gas and a Mach 2 nozzle. An output power of 2.6 kW was obtained for a chlorine flow rate of 140 mmol/s, corresponding to a chemical efficiency of 20.4%. When the chlorine flow rate was reduced to 115 mmol/s, a higher chemical efficiency of 22.7% was attained. Measurements showed that the SPJSOG during normal operation could provide a singlet oxygen yield Y greater than or equal to 55%, a chlorine utilization U greater than or equal to 85%, and a relative water vapor concentration w = [H2O]/([O-2] + [Cl-2]) less than or equal to 0.1.
Resumo:
Rare earth metal bis(alkyl) complexes attached by fluorenyl modified N-heterocyclic carbene (NHC) (Flu-NHC)Ln(CH2SiMe3)(2) (Flu-NHC = (C13H8CH2CH2(NCHCCHN)C6H2Me3-2,4,6); Ln = Sc (2a); Y (2b); Ho (2c); Lu (2d)), ((tBu)Flu-NHC)Ln(CH2SiMe3)(2) ((tBu)Flu-NHC = 2,7-(Bu2C13H6CH2CH2)-Bu-t(NCHCCHN)C6H2Me3-2,4,6; Ln = Sc (1a); Lu (1d)) and attached by indenyl modified N-heterocyclic carbene (Ind-NHC)Ln(CH2SiMe3)(2) (Ind-NHC = C9H6CH2CH2(NCHCCHN)C6H2Me3-2,4,6; Ln = Sc (3a); Lu (3d)), under the activation of (AlBu3)-Bu-i and [Ph3C][B(C6F5)(4)], showed varied catalytic activities toward homo- and copolymerization of ethylene and norbornene. Among which the scandium complexes, in spite of ligand type, exhibited medium to high catalytic activity for ethylene polymerization (10(5) g mol(Sc)(-1) h(-1) atm(-1)), but all were almost inert to norbornene polymerization. Remarkably, higher activity was found for the copolymerization of ethylene and norbornene when using Sc based catalytic systems, which reached up to 5 x 10(6) g mol(Sc)(-1) h(-1) atm(-1) with 2a. The composition of the isolated copolymer was varying from random to alternating according to the feed ratio of the two monomers (r(E) = 4.1, r(NB) = 0.013).
Resumo:
A series of novel neutral nickel complexes 4a-e bearing modified beta-ketoiminato ligands [(2,6-(Pr2C6H3)-Pr-i)N=C(R-1)CHC(2 '-R2C6H4)O]Ni(Ph)(PPh3) (4a, R-1 R-2 = H; 4b, R-1 = H, R-2 = Ph; 4c, R-1 = H, R-2 = Naphth; 4d, R-1 = CH3, R-2 = Ph; 4e, R-1 = CF3, R-2 Ph) have been synthesized and characterized. Molecular structures of 4b and 4e were further confirmed by X-ray crystallographic analysis. Activated with B(C6F5)(3), all the complexes are active for the polymerization of ethylene to branched polyethylenes. Ligand structure, i.e., substituents R-1 and R-2, greatly influences not only catalytic activity but also the molecular weight and branch content of the polyethylene produced. The phenyl-substituted complex 4b exhibits the highest activity of lip to 145 kg PE/mol(Ni)center dot h center dot atm under optimized conditions, which is about 10 times more than unsubstituted complex 4a (14.0 kg PE/mol(Ni center dot)h center dot atm). Highly branched polyethylene with 103 branches per 1000 carbon atoms has been prepared using catalyst 4e.
Resumo:
In this work, both the thermal expansion and electrical conductivity of nanocrystalline La2Mo2O9 were studied. The nanocrystalline powder of La2Mo2O9 was obtained by sol-gel method, and with the help of SHP (superhigh pressure) up to 4.5 x 10(4) atm at 700 degrees C for a short time, and the nanocrystalline powder was densified without obvious particle size growth. The electrical conductivity of nanocrystalline La2Mo2O9 was one order of magnitude lower than that of the microcrystalline sample at the same temperature. Owing to the phase transition, the microcrystalline La2MO2O9 has an abrupt increase of thermal expansion with a peak value of 48 x 10(-6) K-1 at 556 degrees C. For the nanocrystalline material, the peak value increases to 112 x 10(-6) K-1 at 520 degrees C. On the other hand, above 600 degrees C the significant growth of particle size of the nanocrystalline La2Mo2O9 was observed, accompanying by a tremendous increase of thermal expansion with a peak value of 1565 x 10(-6) K-1 at 620 degrees C. The electrical conductivity of La1.6Nd0.4Mo2O9 at 800 degrees C is 0.14 S center dot cm(-1) which is about one third higher than that of La2Mo2O9.
Resumo:
Sr2Fe1-xZnxNbO6-x/2 (0 <= x <= 0.5) and Sr2Fe1-xCuxNbO6-x/2 (0.01 <= x <= 0.05) with the double perovskite structure have been synthesized. The crystal structures at room temperature were determined from Rietveld refinements of X-ray powder diffraction data. The plots of the imaginary parts of the impedance spectrum, Z '', and the electric modulus, M '', versus log (frequency), possess maxima for both curves separated by less than a half decade in frequency with associated capacities of 2 nF. The enhancement of the overall conductivity Of Sr2Fe1-xMxNbO6-x/2 (M = Cu and Zn) is observed, as increases from 2.48 (3) x 10(-4) S/cm for Sr2FeNbO6 to 3.82 (5) x 10(-3) S/cm for Sr2Fe0.8Zn0.2NbO5.9 at 673 K. Sr2Fe0.8Zn0.2NbO5.9 is chemically stable under the oxygen partial pressure from 1 atm to 10(-22) atm at 873 K. The p and n-type electronic conductions are dominant under oxidizing and reducing conditions, respectively, suggesting a small-polaron hopping mechanism of electronic conduction.
Resumo:
Gas permeability coefficients of a series of aromatic polyimides, which were prepared from oxydiphthalic dianhydride (ODPA) with various aromatic diamines, with respect to H-2, CO2, O-2, N-2, and CH4 were measured under 10 atm and in the temperature range from 30 to 150 degrees C. A significant change in gas permeability and permselectivity resulting from systematic variation of the chemical structure of the polyimides was found. Among the polyimides which were prepared from phenylenediamine and its derivatives as well as bridged diamines without side groups on the benzene rings of the diamine residues, the increase of the gas permeability is accompanied by a decrease of the permselectivity. However, both the gas permeability and the permselectivity of the polyimides which were prepared from bridged diamines with methyl or methoxy groups on the benzene rings of the diamine residues simultaneously increase.
Resumo:
Gas transport properties of home- and copolyimides prepared from 3,3',4,4'- and 2,2',3,3'-thiaphthalic dianhydride (p-TDPA and m-TDPA, respectively) with 4,4-oxydianiline (ODA) were investigated. The fractional free volume of m-TDPA-ODA is larger than that of p-TDPA-ODA, and the chain segmental mobility of the former is lower than that of the latter. The permeability coefficients of m-TDPA-ODA to H-2, CO2, and O-2 are more increased by 48, 69 and 75%, at 30 degrees C and 10 atm, respectively, than those of p-TDPA-ODA; but the permselectivities of m-TDPA-ODA for H-2, CO2, and O-2 toward N-2 are more decreased by 33, 77, and 26%, respectively, than those of p-TDPA-ODA. The permeability coefficients and the diffusion coefficients of the copolyimides can be described by the following equations: log P = Phi(p) log P-p + Phi(m), log P-m and log D-a = D-a = Phi(p) log(D-alpha)(p) + Phi(m) log(D-a)(m), respectively. The variation of the permselectivity is controlled predominantly by diffusivity selectivity. These observations are interpreted in terms of variations in the fractional free volume of polyimides. (C) 1997 John Wiley & Sons, Inc.
Resumo:
A series of aromatic copolyimides was prepared from 1,4-bis(3,4-dicarboxyphenoxy)benzene dianhydride (HQDPA) and 2,2-bis(3,4-dicarboxyphenyl)hexafluoroisopropane dianhydride (6FDA) with 3,3'-dimethyl-4,4'-methylene dianiline (DMMDA) by a chemical imidization. The gas permeability coefficients of the copolyimides to H-2, CO2, O-2, N-2 and CH4 were measured under 7 atm. pressure. The fractional free volume of 6FDA-DMMDA is larger than that of HQDPA-DMMDA, while the chain segmental mobility of 6FDA-DMMDA is lower than that of HQDPA-DMMDA. The gas permeability of 6FDA-DMMDA is much higher than that of HQDPA-DMMDA but the permselectivity of 6FDA-DMMDA for H-2, CO2, O-2, N-2 over CH4 is lower than that of HQDPA-DMMDA. The experimental values of the gas permeability coefficients of the copolyimides are in satisfactory agreement with the values estimated from the gas permeability coefficients of the constituent homopolyimides and their weight fractions.
Resumo:
Gas permeability coefficients of a series of aromatic polyetherimides, which were prepared from 1,4-bis(3,4-dicarboxyphenoxy) benzene dianhydride (HQDPA) with various aromatic diamines, to H-2, O-2 and N-2 have been measured under 7 atm and at the temperature range 30-100 degrees C. A significant change in the permeability and permselectivity resulting from the systematic variation in chemical structure of the polyetherimides was found. Among the polyetherimides, that were prepared from phenylenediamine and methyl substituted phenylenediamines, the increase of permeability is accompanied by a decrease of permselectivity. The polyetherimides that were prepared from 3,5-diaminobenzoic esters have lower permselectivity than the others. However, the polyetherimide from 3,5-diaminobenzoic acid possesses much higher permselectivity than the others due to cross-linking. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
The vapor phase esterification of acetic acid with ethanol and n-butanol catalyzed by SiW12 supported on activated carbon was studied in a flow fixed-bed reactor in the range of 358 to 433 K. The effects of the reaction temperature, liquid hourly space velocity (LHSV) as well as the molar ratio on the catalytic activity have been investigated. The kinetic studies showed that the rate of esterification was dependent on the partial pressures of the reactants and the addition of argon, an inert diluent in the system when the total pressure was kept at 1 atm. Also the alcohol structure has a profound effect on not only the rate of esterification, but also on the mechanism of esterification changing from a dual site mechanism for ethanol to a single site mechanism for n-butanol.
Resumo:
Permeability coefficients of H-2, O-2, and N2 were measured under 10 atm at the temperature from ambient temperature up to 150 degrees C in a series of structurally different aromatic homo- and copolyimides, which were prepared from 4,4'-oxydianiline (ODA) or 4,4'-methylene dianiline (MDA) with various aromatic dianhydrides. The study shows that the molecular structure of the polyimides strongly influences gas permeability and permselectivity. As a result, the permeability coefficients of the polyimide membranes for each gas vary by over two orders of magnitude. In general, among the polyimide membranes studied, the increase in permeability of polymers is accompanied by the decrease in permselectivity, and the MDA-based polyimide membranes have higher permeability than ODA-based ones. Among the polyimides prepared from bridged dianhydrides, the permeability coefficients to H-2, O-2, and N-2 are progressively increased in the order BPDA < BTDA < ODPA similar to TDPA < DSDA ( SiDA < 6FDA, while H-2/N-2 and O-2/N-2 permselectivity coefficients are progressively decreased in the same order. The copolyimide membranes, which were prepared from 3,3',4,4' biphenyltetracarboxylic dianhydride (BPDA), bis(3,4-dicarboxyphenyl)dimethylsilane dianhydride (SiDA), and ODA, have favorable gas separation properties and are useful for H-2/N-2 separation applications. (C) 1996 John Wiley & Sons, Inc.
Resumo:
Gas permeability coefficients of a series of aromatic polyetherimides, which were prepared from 1,4-bis(3,4-dicarboxyphenoxy) benzene dianhydride (HQDPA) and various aromatic diamines, to H-2, CO2, O-2, N-2 and CH4 have been measured under 7 atm pressure and over the temperature range 30-150 degrees C. A significant change in permeability and permselectivity, which resulted from a systematic variation in chemical structure of the polyetherimides, was found. Generally, increases in permeability of the polyetherimides are accompanied by decreases in permselectivity. The order of decrease of the permeability coefficients is as follows: HQDPA-IPDA > HQDPA-DDS > HQDPA-MDA > HQDPA-ODA > HQDPA-DABP > HQDPA-BZD. However, HQDPA-DMoBZD and HQDPA-DMoMDA, with bulky methoxy side-groups on the aromatic rings of the diamine residue, display both high permeability coefficients and high permselectivity. The favourable gas separation property, excellent thermal and chemical stability, and high mechanical strength make HQDPA-DMoBZD and HQDPA-DMoMDA promising candidates for membrane-based gas separation applications.
Resumo:
Gas permeability coefficients of a series of aromatic polyetherimides prepared from 1,4-bis(3,4-dicarboxyphenoxy) benzene dianhydride (HQDPA) and four (methylene dianiline)s with a methyl side group to H-2, CO2, O-2, N-2, and CH4 were measured under 7 atm and within a temperature range from 30 to 150 degrees C. The gas permeabilities and permselectivities of these polymers were compared with those of the HQDPA-based polyetherimides from methylene dianiline (MDA) and isopropylidene dianiline (IPDA). The number and position of the methyl side groups on the benzene rings of the diamine residues strongly affect the gas permeabilities and permselectivities of the HQDPA-based polyetherimides. The gas permeability of the polyetherimide progressively increases with an increase in the number of the methyl side groups. Both the gas permeability and permselectivity of the polyetherimides with methyl side groups are higher than those of HQDPA-MDA. The polyetherimide prepared from 3,3'-dimethyl 4,4'-methylene dianiline (DMMDA1) possesses both higher permeability and permselectivity than the polyetherimides prepared from 2,2'-dimethyl 4,4'-methylene dianiline (DMMDA2). However, two of the polyetherimides prepared 2,2',3,3'-tetramethyl 4,4'-methylene dianiline (TMMDA1) or 2,2', 5,5'-tetramethyl 4,4'-methylene dianiline (TMMDA2) possess almost the same gas permeability and permselectivity.