251 resultados para DOT


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using analytical expressions for the polarization field in GaN quantum dot, and an approximation by separating the potential into a radial and an axial, we investigate theoretically the quantum-confined Stark effects. The electron and hole energy levels and optical transition energies are calculated in the presence of an electric field in different directions. The results show that the electron and hole energy levels and the optical transition energies can cause redshifts for the lateral electric field and blueshifts for the vertical field. The rotational direction of electric field can also change the energy shift.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first demonstration, to our knowledge, of the creation of ultrabroadband superluminescent light-emitting diodes using multiple quantum-dot layer structure by rapid thermal-annealing process is reported. The device exhibits a 3 dB emission bandwidth of 146 nm centered at 984 mm with cw output power as high as 15 mW at room temperature corresponding to an extremely small coherence length of 6.6 mu m. (C) 2008 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comparative study of the steady-state and transient optical properties was made between InGaAs/GaAs quantum do chains (QDCs) and quantum dots (QDs). It was found that the photoluminescence (PL) decay time of QDCs exhibited a strong photon energy dependence, while it was less sensitive in QDs. The PL decay time increased much faster with the excitation power in the QDCs than that in QDs. When the excitation power was large enough, the PL decay time tended to be saturated. In addition, it was also found that the PL rise time was much shorter in QDCs than in QDs. All these experimental results show that there is a strong carrier coupling along the chain direction in the QD chain structure. The polarization PL measurements further confirm the carrier transfer process along the chain direction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-power and broadband quantum-dot (QD) superluminescent light-emitting diodes are realized by using a combination of self-assembled QDs with a high density, large inhomogeneous broadening, a tapered angled pump region, and etched V groove structure. This broad-area device exhibits greater than 70-nm 3-dB bandwidth and drive current insensitive emission spectra with 100-mW output power under continuous-wave operation. For pulsed operation, greater than 200-mW output power is obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gain saturation behaviors and noise figure are numerically analyzed for quantum-dot semiconductor optical amplifiers (QD-SOAs). The carrier and photon distributions in the longitudinal direction as well as the photon energy dependent facet reflectivity are accounted in the rate equations, which are solved with output amplified spontaneous emission spectrum as iterative variables. The longitudinal distributions of the occupation probabilities and spectral-hole burning are presented for electrons in the excited and ground states of quantum dots. The saturation output power 19.7 dBm and device gain 20.6 dB are obtained for a QD-SOA with the cavity length of 6 rum at the bias current of 500 mA. The influences of them electron intradot relaxation time and the QD capture time on the gain spectrum are simulated with the relaxation time of 1, 30, and 60 ps and capture time of 1, 5, and 10 ps. The noise figure as low as 3.5 dB is expected due to the strong polarization sensitive spontaneous emission. The characteristics of gain saturation and noise figure versus input signal power for QD-SOAs are similar to that of semiconductor. linear optical amplifiers with gain clamping by vertical laser fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the effects of accumulated strain by stacking on the surface and optical properties of stacked 1.3 mu m InAs/GaAs quantum dot (QD) structures grown by MOCVD. It is found that the surface of the stacked QD structures becomes more and more undulated with stacking, due to the increased strain in the stacked QD structures with stacking. The photoluminescence intensity from the QD structures first increases as the stacking number increases from 1 to 3 and then dramatically decreases as it further increases, implying a significant increase in the density of crystal defects in the stacked QD structures due to the accumulated strain. Furthermore, we demonstrate that the strain can be reduced by simply introducing annealing steps just after growing the GaAs spacers during the deposition of the stacked QD structures, leading to significant improvement in the surface and optical properties of the structures. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Excitation power-dependent micro-photoluminescence spectra and photon-correlation measurement are used to study the optical properties and photon statistics of single InAs quantum dots. Exciton and biexciton emissions, whose photoluminescence intensities have linear and quadratic excitation power dependences, respectively, are identified. Under pulsed laser excitation, the zero time delay peak of second order correlation function corresponding to exciton emission is well suppressed, which is a clear evidence of single photon emission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron transport through two parallel quantum dots is a kind of solid-state realization of double path interference We demonstrate that the inter-clot Coulomb correlation and quantum coherence would result in strong current fluctuations with a divergent Fano factor at zero frequency. We also provide physical interpretation for this surprising result, which displays its generic feature and allows us to recover this phenomenon in more complicated systems. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this letter, we have demonstrated continuous-wave single-mode operation of 1.3-mu m InAs-GaAs quantum-dot (QD) vertical-cavity surface-emitting lasers (VCSELs) with p-type modulation-doped QD active region from 20 degrees C to 60 degrees C. The highest output power of 0.435mW and lowest threshold current of 1.2 mA under single-mode operation are achieved. The temperature-dependent output characteristics of QD-VCSELs are investigated. Single-mode operation with a sidemode suppression ratio of 34 dB is observed at room temperature. The critical size of oxide aperture for single-mode operation is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the fabrication of 1.3 mu m waveband p-doped InAs quantum dot (QD) vertical cavity surface emitting lasers (VCSELs) with an extremely simple process. The continuous-wave saturated output power of 1.1 mW with a lasing wavelength of 1280 nm is obtained at room temperature. The high-speed modulation characteristics of p-doped QD VCSELs of two different oxide aperture sizes are investigated and compared. The maximum 3 dB modulation bandwidth of 2.5 GHz can be achieved at a bias current of 7 mA for a p-doped QD VCSEL with an oxide aperture size of 10 mu m in the small signal frequency response measurements. The crucial factors for the 3 dB bandwidth limitation are discussed according to the parameters' extraction from frequency response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report an experimental and theoretical study of maximum modal gain of p-doped 1.3 mu m InAs/GaAs quantum dot (QD) lasers. The maximum modal gain of the QD laser with five stacks of QDs is as high as 17.5 cm(-1) which is the same as that of the undoped laser with identical structures. The expression of the maximum modal gain is derived and it is indicated that p-doping has no effect to the maximum modal gain. We theoretically calculated the maximum modal gain of the QD lasers and the result is in a good agreement with the experimental data. Furthermore, QDs with lower height or smaller aspect ratio are beneficial to achieving a greater maximum modal gain that leads to lower threshold current density and higher differential modal gain, which is good for the application of p-doped 1.3 mu m InAs/GaAs QD lasers in optical communications systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the solid-state double-dot interferometer, the phase shifted interference pattern induced by the interplay of inter-dot Coulomb correlation and multiple reflections is analyzed by harmonic decomposition. Unexpected result is uncovered, and is discussed in connection with the which-path detection and electron loss. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characteristics of a resonant cavity-enhanced InGaAs/GaAs quantum-dot n-i-n photodiode with only a bottom distributed Bragg reflector used as the cavity mirror, are reported. To suppress the dark current, an AlAs layer is inserted into the device structure as the blocking layer. It turns out that the structure still possesses the resonant coupling nature, and makes Rabi splitting discernible in the photoluminescence spectra. The measured responsivity spectrum of the photocurrent shows a peak at lambda = 1030 nm, and increases rapidly as the bias voltage increases. A peak responsivity of 0.75 A/W, or equivalently an external quantum efficiency of 90.3%, is obtained at V-bias = -1.4 V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photoluminescence correlation from a single CdSe nanocrystal under pulsed excitation is studied, and a single photon is realized at wavelength 655 nm at room temperature. The single colloidal CdSe quantum dot is prepared on a SiO2/silicon surface by a drop-and-drag technique. The long-term stability of the single-photon source is investigated; it is found that the antibunching effect weakens with excitation time, and the reason for the weakening is attributed to photobleaching. The lifetimes of photoluminescence from a single quantum dot are analyzed at different excitation times. By analyzing the probability distribution of on and off times of photoluminescence, the Auger assisted tunneling and Auger assisted photobleaching models are applied to explain the antibunching phenomenon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dependence of the electronic energy levels on the size of quantum dots (QDs) with the shape of spherical lens is studied by using the B-spline technique for the first time. Within the framework of the effective-mass theory, the values of electronic energy levels are obtained as a function of the height, radius and volume of QDs, respectively. When the height or radius of QDs increases, all the electronic energy levels lower, and the separations between the energy levels decrease. For lens-shape QDs, height is the key factor in dominating the energy levels comparing with the effect of radius, especially in dominating the ground-state level. These computational results are compared with that of other theoretical calculation ways. The B-spline technique is proved to be an effective way in calculating the electronic structure in QDs with the shape of spherical lens.