72 resultados para DIFRACCIÓN DE RAYOS X
Resumo:
采用离子注入、离子沉积及后期退火方法制备了稀磁半导体单晶Mn_xGa_(1-x)Sb,在室温下(300 K)获得了单晶的磁滞回线。用X射线衍射方法分析了铁磁性半导体单晶Mn_xGa_(1-x)Sb的结构,用电化学C-V法分析了单晶的载流子浓度分布。由X射线衍射得知,Mn_xGa_(1-x)Sb中Mn含量逐渐由近表面处的x = 0.09下降到晶片内部的x = 0。电化学C-V测得单晶的空穴浓度高达1 * 10~(21)cm~(-3),表明Mn_xGa_(1-x)Sb单晶中大部分Mn原子占据Ga位,起受主作用。
Resumo:
介绍脉冲X光机和医用X光机的特性,应用这两种设备进行一系列饱和砂土的冲击加载实验。利用医用X光机拍摄到了饱和砂土在冲击载荷作用下产生的横断裂缝、纵向排水通道以及密实沉降的照片,得到了横断裂缝和纵向排水通道的出现规律,从而为研究饱和砂土冲击液化后结构破坏与密实沉降的机理提供了一种实验观测手段。
Resumo:
本文以EDTA溶胶凝胶法合成K2NiF4型稀土复合氧化物La2Ni1-xMxO4(M=Cu,Fe),并对反应生成粉体分别进行SEM表征与XRD测试。结果表明,选取合适的制备工艺,可以形成La2Ni1-xMxO4(M=Cu,Fe)稀土复合氧化物材料;随着掺杂离子半径增大,生成材料晶格常数a增大同时,c减少,粉体颗粒粒径较大,同时少量杂相存在。
Resumo:
The monodisperse polystyrene spheres are assembled into the colloidal crystal on the glass substrate by vertical deposition method, which is aimed at the so-called photonic crystal applications. The structural information of the bulk colloidal crystal is crucial for understanding the crystal growth mechanism and developing the various applications of colloidal crystal. Small-angle X-ray scattering (SAXS) technique was used to obtain the bulk structure of the colloidal crystal at Beamline 1W2A of BSRF. It is found that the SAXS pattern is sensitive to the relative orientation between the colloidal sample and the incident X-ray direction. The crystal lattice was well distinguished and determined by the SAXS data.
Resumo:
An experimental study on the angular distribution and conversion of multi-keV X-ray sources produced from 2 ns-duration 527nm laser irradiated thick-foil targets on Shenguang II laser facility (SG-II) is reported. The angular distributions measured in front of the targets can be fitted with the function of f(theta) = alpha+ (1- alpha)cos(beta) theta (theta is the viewing angle relative to the target normal), where alpha = 0.41 +/- 0.014, beta = 0.77 +/- 0.04 for Ti K-shell X-ray Sources (similar to 4.75 keV for Ti K-shell), and alpha = 0.085 +/- 0.06, beta = 0.59 +/- 0.07 for Ag/Pd/Mo L-shell X-ray Sources (2-2.8 keV for Mo L-shell, 2.8-3.5 keV for Pd L-shell, and 3-3.8 keV for Ag L-shell). The isotropy of the angular-distribution of L-shell emission is worse than that of the K-shell emission at larger viewing angle (>70 degrees), due to its larger optical depth (stronger self-absorption) in the cold plasma side lobe Surrounding the central emission region, and in the central hot plasma region (emission region). There is no observable difference in the angular distributions of the L-shell X-ray emission among Ag, Pd, and Mo. The conversion efficiency of Ag/Pd/Mo L-shell X-ray sources is higher than that of the Ti K-shell X-ray sources, but the gain relative to the K-shell emission is not as high as that by using short pulse lasers. The conversion efficiency of the L-shell X-ray sources decrease, with increasing atomic numbers (or X-ray photon energy), similar to the behavior of the K-shell X-ray Source.
Resumo:
We propose a new x-ray laser mechanism that uses radiation from the strongest 3d --> 2p Ne-like resonance line in an optically thick plasma to radiatively drive population from the Ne-like ground state to the 3d state, which then lases to two 3p states. Collisional mixing of the 3p states with nearby 3s and 3d states depopulates the lower laser states. Modeling is presented for this mechanism in Ne-like Ar, and in experiments we observe one potential 3d --> 3p lasing transition at 45.1 nm in Ne-like Ar. (C) 1996 Optical Society of America
Resumo:
The dynamic interaction processes between a nano-second laser pulse and a gas-puff target, such as those of plasma formation, laser heating, and x-ray emission, have been investigated quantitatively. Time and space-resolved x-ray and optical measurement techniques were used in order to investigate time-resolved laser absorption and subsequent x-ray generation. Efficient absorption of the incident laser energy into the gas-puff target of 17%, 12%, 38%, and 91% for neon, argon, krypton, and xenon, respectively, was shown experimentally. It was found that the laser absorption starts and, simultaneously, soft x-ray emission occurs. The soft x-ray lasts much longer than the laser pulse due to the recombination. Temporal evolution of the soft x-ray emission region was analyzed by comparing the experimental results to the results of the model calculation, in which the laser light propagation through a gas-puff plasma was taken into account. (C) 2003 American Institute of Physics.
Resumo:
In this work, the results of numerical simulations of X-ray fluorescence holograms and the reconstructed atomic images for Fe single crystal are given. The influences of the recording angles ranges and the polarization effect on the reconstruction of the atomic images are discussed. The process for removing twin images by multiple energy fluorescence holography and expanding the energy range of the incident X-rays to improve the resolution of the reconstructed images is presented. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
研究了逆流相对论电子与激光脉冲相互作用获得激光同步辐射的频率上移、微分散射截面等特性.发现逆流相对论电子与短脉冲激光相互作用,可以获得阿秒X射线辐射脉冲.短脉冲激光条件下得到的后向散射光的频率上移与长脉冲激光条件下得到的后向散射光的频率上移是完全一致的,同时发现随着入射电子初始能量的增加,散射光的准直性越来越好,后向散射光脉冲的脉宽越来越短.
Resumo:
报道了利用皮秒激光驱动产生瞬态类镍银X射线激光的实验结果.采用一路脉冲宽度为数百皮秒的激光作为预脉冲,配合另一路皮秒激光作为主脉冲联合驱动平面靶,获得了一定强度的类镍银X射线激光输出,输出能量约为5-10nJ.
Resumo:
详细论述了时间分辨X射线衍射探测原子动态过程和生物大分子瞬态结构的各种方法。介绍了多种超快X射线脉冲光源及其在材料和生化领域中的研究进展状况。材料方面:在皮秒时间尺度探测到了晶格间距毫埃的微小变化;在亚皮秒的时间尺度直接观测到晶体的超快熔化过程和晶体内的相干声子散射;生物化学方面:采用时间分辨X射线劳厄衍射方法探测了蛋白质大分子结构的变化和功能之间的关系;精确描述了有机分子在光作用下形态发生改变时分子键角的扭转角度,从结构上揭示了其动态机理。
Resumo:
x射线激光探针干涉方法是诊断高温高密度激光等离子体电子密度等信息的重要工具.利用神光Ⅱ装置输出激光驱动的类镍-银x射线激光作为探针,成功地进行了马赫-曾德尔干涉法诊断实验,获得了清晰的包含等离子体信息的动态干涉条纹图像,并据此给出了待测C8H8等离子体临界面附近电子密度的空间分布。
Resumo:
The influence of focus spot and target thickness on multi-keV x-ray sources generated by 2 ns duration laser heated solid targets are investigated on the Shenguang II laser facility. In the case of thick-foil targets, the experimental data and theoretical analysis show that the emission volume of the x-ray sources is sensitive to the laser focus spot and proportional to the 3 power of the focus spot size. The steady x-ray flux is proportional to the 5/3 power of the focus spot size of the given laser beam in our experimental condition. In the case of thin-foil targets, experimental data show that there is an optimal foil thickness corresponding to the given laser parameters. With the given laser beam, the optimal thin-foil thickness is proportional to the -2/3 power of the focus spot size, and the optimal x-ray energy of thin foil is independent of focus spot size. (C) 2008 American Institute of Physics.