30 resultados para DIC
Resumo:
On the basis of data collected in the Jiaozhou Bay in June and July 2003, the DIC distribution in seawater is studied, and an average air-sea flux of CO2 is estimated. The results show that the content of DIC inside the bay is markedly higher than outside the bay in June, but the content of DIC outside the bay is markedly higher than inside the bay in July. The trend of DIC distribution inside the bay is similar, viz. the content is the maximum in the northeast, then decreases gradually toward the west, and the content is the minimum in the west. The total trend of vertical distribution is to increase gradually from surface to bottom. This characteristic of DIC distribution is determined by Jiaozhou Bay hydrology and there is a close relation between DIC and particulate N,P. Average CO2 flux across the air-sea interface is 0.55 mol/(m(2.)a) in June and 0.72 mol/(m(2.)a) in July. Jiaozhou Bay is considered as a net annual source for atmospheric CO2 in June and July, and the total CO2 flux from seawater into atmosphere is about 740 t in June and 969 t in July.
Resumo:
Dissolved inorganic carbon (DIC) account for more than 95% of total carbon in seawater, so it is necessary to make reliable and precise measurements of DIC to study marine carbon cycling. In order to establish a simple and speed method, an airproof device of gas extraction-absorption was designed. Finally a simple method was developed for the determination of DIC in seawater through a large mount of experiments. The determination procedure is as follows: 100 similar to 150 mL seawater was put into conical flask, then add 10% H3PO4, the DIC in seawater sample was dissolved to form CO2 gas and carried by pure N-2, then the CO2 gas was absorbed by two grades 0.1 mol/L NaOH solution. Finally the absorbed solution was titrated by HCl standard solution of 0.01000 mol/L with the end points detected with the indicator phenolphthalein and bromocresol green-methyl red mixture. The precision and accuracy of the method were satisfied. This method was used to analyse seawater samples from Jiaozhou bay in June, 2003. The result shows that the average DIC in surface seawater is 2066 mumol/L, DIC in bottom seawater is 2075 mumol/L inside bay, but the average DIC in surface seawater is 1949 mumol/L, DIC in bottom seawater is 2147 mumol/L outside bay.
Resumo:
The seasonal evolution of dissolved inorganic carbon (DIC) and CO2 air-sea fluxes in the Jiaozhou Bay was investigated by means of a data set from four cruises covering a seasonal cycle during 2003 and 2004. The results revealed that DIC had no obvious seasonal variation, with an average concentration of 2035 mu mol kg(-1) C in surface water. However, the sea surface partial pressure of CO2 changed with the season. pCO(2) was 695 mu atm in July and 317 mu atm in February. Using the gas exchange coefficient calculated with Wanninkhof's model, it was concluded that the Jiaozhou Bay was a source of atmospheric CO, in spring, summer, and autumn, whereas it was a sink in winter. The Jiaozhou Bay released 2.60 x 10(11) mmol C to the atmosphere in spring, 6.18 x 10(11) mmol C in summer, and 3.01 x 10(11) mmol C in autumn, whereas it absorbed 5.32 x 10(10) mmol C from the atmosphere in winter. A total of 1.13 x 10(11) mmol C was released to the atmosphere over one year. The behaviour as a carbon source/sink obviously varied in the different regions of the Jiaozhou Bay. In February, the inner bay was a carbon sink, while the bay mouth and the Outer bay were carbon sources. In June and July, the inner and Outer bay were carbon sources, but the strength was different, increasing from the inner to the outer bay. In November, the inner bay was a carbon source, but the bay Mouth was a carbon sink. The outer bay was a weaker CO2 Source. These changes are controlled by many factors, the most important being temperature and phytoplankton. Water temperature in particular was the main factor controlling the carbon dioxide system and the behaviour of the Jiaozhou Bay as a carbon source/sink. The Jiaozhou Bay is a carbon dioxide source when the water temperature is higher than 6.6 degrees C. Otherwise, it is a carbon sink. Phytoplankton is another controlling factor that may play an important role in behaviour as a carbon source or sink in regions where the source or sink nature is weaker.
Resumo:
Geothermal resource is rich in Guanzhong Basin, but as to its cycle characteristic, there has been lack of systematic study so far. Blind exploitations lead to water-temperature reducing, the decrease of spring flow rate and so on. Based on groundwater system and hydrogeological and hydrological geochemical theory, this paper studied the recycling type of geothermal water and analyzed the resources of dissolved inorganic carbon (DIC) and sulfate. The origin of the internal geothermal water is ice and snow in Qinling Mountain and Liupan Mountain above 1400m. The precipitation and surface water entered the deep part of the basin along piedmont faults, heated and water-expansion increased. The karst groundwater comes from meteoric water of the bare carbonate rock area in the North Mountains. Geothermal-water DIC mainly came from the dissolution of carbonate rock in the deep part of Guanzhong Basin, sulfate of Xi’an depression and Lishan salient came from the dissolution of continental evaporate , and sulfate of Gushi depression and Xianli salient came from co-dissolution of continental and marine evaporate. The above results supply science basis for reasonable exploitation and sustainable utilization of the geothermal water in Guanzhong Basin.
Resumo:
流域化学侵蚀及其速率与流域生态和环境之间的关系是当前地表地球化学研究的重要前沿领域,其中碳酸盐岩的硫酸风化机制及其与区域碳循环的关系则是科学家们最为关注的科学问题。因此,近年通过研究西南喀斯特流域地表水地球化学对这一科学问题进行了研究,发现西南喀斯特地区河水一般含有较多的SO42-,从化学计量学、SO42-和δ34S和溶解无机碳(DIC)的δ13C分析发现,硫循环中形成的硫酸广泛参与了流域碳酸盐矿物的溶解和流域侵蚀:西南喀斯特流域碳酸盐岩的侵蚀速率为97 t/(km2·a),消耗CO2量为25 t/(km ·a)。对乌江流域河水硫酸盐离子的硫同位素研究结果认为:参与流域侵蚀的硫酸主要来自煤系地层硫化物和矿床硫化物的氧化及大气酸沉降,分别对河水SO42-的贡献为50%、27%和20.5%(其余2.5%的SO42-为硫酸盐蒸发岩的溶解);硫酸风化碳酸盐岩向大气净释放CO2的总通量为8.2 t/(km ·a),依此计算西南喀斯特区域向大气释放CO2的通量为4.4×10 g/a,相当于每年西南碳酸盐岩风化消耗CO2总通量的33%。将乌江流域的研究结果对我国大陆碳酸盐岩分布区域进行相应计算发现,硫酸风化碳酸盐矿物向大气释放的CO2总通量为28×10 g/a,相当于全球硅酸盐风化消耗CO2量的26% 。硫酸参与流域侵蚀改变了区域碳循环,人为过程可以通过释放酸沉降、矿业活动和土地利用等形式加速流域侵蚀和影响流域元素的生物地球化学循环。
Resumo:
关于全球CO2汇的位置、大小、变化和机制目前仍不确定, 还存有争议. 在理论计算和野外观测数据证明的基础上发现, 可能存在一种由全球水循环产生的重要的CO2汇(以溶解无机碳-DIC的形式). 这个汇达到0.8013 Pg C/a(约占人类活动排放CO2总量的10.1%, 或占所谓的遗漏CO2汇的28.6%), 它是由水对CO2的溶解吸收形成的, 并随着碳酸盐的溶解及水生植物光合作用对CO2的消耗的增加而显著增加. 这部分汇中有0.5188 Pg C/a通过海上降水(0.2748 Pg C/a)和陆地河流(0.244 Pg C/a)进入海洋, 有0.158 Pg C/a再次释放进入大气, 还有0.1245 Pg C/a储存在陆地水生生态系统中. 因此, 净沉降是0.6433 Pg C/a. 随着全球变暖引起的全球水循环的加强、CO2和大气圈中碳酸盐粉尘的增加, 还有造林地区的增多(会引起土壤CO2的增加进而导致水中DIC浓度的增大), 这部分汇也可能增加.
Resumo:
流域化学侵蚀及其速率与流域生态和环境之间的关系是当前地表地球化学研究的重要前沿领域,其中碳酸盐岩的硫酸风化机制及其与区域碳循环的关系则是科学家们最为关注的科学问题。因此,近年通过研究西南喀斯特流域地表水地球化学对这一科学问题进行了研究,发现西南喀斯特地区河水一般含有较多的SO4^2-,从化学计量学、SO4^2-的占δ^34S和溶解无机碳(DIC)的δ^13C分析发现,硫循环中形成的硫酸广泛参与了流域碳酸盐矿物的溶解和流域侵蚀:西南喀斯特流域碳酸盐岩的侵蚀速率为97t/(km^2·a),消耗COz量为25t/(km^2·a)。对乌江流域河水硫酸盐离子的硫同位素研究结果认为:参与流域侵蚀的硫酸主要来自煤系地层硫化物和矿床硫化物的氧化及大气酸沉降,分别对河水SO4^2-的贡献为50%、27%和20.5%(其余2.5%的SO4^2-为硫酸盐蒸发岩的溶解);硫酸风化碳酸盐岩向大气净释放CO2的总通量为8.2t/(km^2·a),依此计算西南喀斯特区域向大气释放CO2的通量为4.4×10^12g/a,相当于每年西南碳酸盐岩风化消耗CO2总通量的33%。将乌江流域的研究结果对我国大陆碳酸盐岩分布区域进行相应计算发现,硫酸风化碳酸盐矿物向大气释放的C02总通量为28×10^12g/a,相当于全球硅酸盐风化消耗CO2量的26%。硫酸参与流域侵蚀改变了区域碳循环,人为过程可以通过释放酸沉降、矿业活动和土地利用等形式加速流域侵蚀和影响流域元素的生物地球化学循环.
Resumo:
河流是连接海洋和陆地生态系统的重要途径,也是全球碳循环研究的重要环节。因此,河水的水文地球化学研究是获得有关流域侵蚀、风化以及元素在大陆- 河流- 海洋系统中外生循环过程等的重要途径。由于碳酸盐岩风化作用的产物在很大程度上控制着地表水系的地球化学组成, 因此对碳酸盐岩地区河流的水文地球化学特征的研究, 对于了解碳酸盐岩地区的侵蚀、风化强度以及河流地球化学组成变化的多种控制因素有很大的意义。 单就珠江水系而言,目前该方面的研究范围较窄,主要集中于珠江流域水文气候监测、水体有机污染物的迁移转化以及珠江三角洲与河口水体的同位素示踪研究等几个方面,而对于典型气候、地质地貌区域内的各支流的系统的水文地球化学研究少之又少。事实上,对于珠江水系的干流西江而言,流域内由于喀斯特地貌广泛发育,具有极强的地理特异性,因而各支流在不同地质地貌特征、土壤、气候、植被等条件下的水文地球化学的系统研究以及同位素示踪流域侵蚀状况等方面的研究,不仅对于更好地了解中国西南地区典型喀斯特岩溶区域内土壤、岩石的化学风化、水土流失、水文地球化学特征以及环境污染等方面具有极其重要的意义,同时也对全球碳循环的系统研究有着极其重要的研究价值。 本研究在导师刘丛强研究员主持的国家重大基础规划“973”计划项目“西南喀斯特山地石漠化与适应性生态系统调控”课题的支持下开展完成,选择贵州境内珠江水系干流西江及其支流(红水河流域),以及一级支流柳江源头都柳江及其支流为研究对象,分别通过对流域内,变质碎屑岩以及海相碳酸盐岩两大岩性区域内不同植被覆盖状况下各地表水体中水文地球化学特征以及碳同位素地球化学特征分析,得出以下结论: 1、流域岩性特征是控制流域内各地表水体水文地球化学特征以及流域风化侵蚀程度的重要影响因素。与此同时,研究区内由于人为活动造成的水体污染对于地表水体离子组成特征的变化,也有一定的影响。 2、研究区珠江流域内的地表水体来源主要为大气降水和地下水。研究区内的受西南季风影响下的频繁的降雨过程,是研究区地表水体的主要补给源。研究区内大气降水大多透过表层土壤,进入深部土壤含水层后,或以地表径流的形式冲刷土壤岩石表层后汇入流域内地表河流;或参与地下水体循环,最终以地下水补给地表河流。研究区内NNE方向褶皱断裂构造极其发育,地表河网与地下河网相互连接,转换频繁。 3、研究区内地表水体的离子组成特征以及物理化学性质,主要受流域内土壤岩石化学风化过程的控制。不同岩性特征区域内,地表水体的离子组成特征以及水化学参数有着显著的差异。 4、通过对贵州境内珠江水系75个地表水体中三种不同形态碳DIC、DOC、POC及其部分稳定碳同位素的分析测试,发现研究区内地表水体中的DIC主要来源于研究区内土壤CO2对不同流域内土壤、岩石矿物的化学风化过程。一般而言,植被覆盖状况较好的区域,土壤CO2较为丰富,化学风化作用较为强烈;碳酸盐岩比硅酸盐类易于风化,并且不同岩性区域化学风化过程可以使得地表水体具有不同的离子组成特征与水化学特性。 5、研究区各流域地表水体中的有机碳主要与流域内植被状况相关。地表水体中DOC浓度在一定程度上反映了流域内的植被状况,而TSS以及POC则反映了流域内土壤有机质的情况。研究区地表水体中DOC、POC含量变化情况,是探讨喀斯特地区碳的源汇关系及循环模式的重要依据。 6、河流悬浮物中的POC主要来源于土壤有机质和陆地植物,是研究流域侵蚀问题的重要指标。研究区内变质碎屑岩以及海相碳酸盐岩区域内各地表水体均表现出δ13CPOC 与TOC/TN之间的负相关关系,且地表水体中颗粒有机物具有较低的TOC/TN,表明研究区内各地表水体中POC很可能来源于深层土壤。水动力越强,流域侵蚀越强烈,因而TSS中TOC/TN越低。
Resumo:
流域水环境是流域一切生态过程的基础,也是保障水资源发挥各项服务功能的必要条件。随着社会经济的发展,河流的自然性质和作用过程受到流域内不断加强的人文活动的强烈冲击。其中,水利大坝对河流的拦截调蓄可以算得上是对河流及流域生态系统的影响最为显著和重要。在河流上修筑水坝后,水库成为流域(河流)景观格局中重要的组成部分。目前对河流“水库效应”的研究主要集中在由水坝拦截引起的河流水文情势改变、泥砂淤积、地貌侵蚀以及鱼类迴游、水坝建设对生源要素的拦截、水库温室气体等方面,且大多数研究只针对单个水库或几个位于不同流域的独立水库,而对同一流域梯级开发形成的河流—水库体系中水环境演化的过程缺乏深入的了解,对单一水库中碳循环的生物地球化学作用研究不够。 碳是生命的核心元素,所有其它重要元素的生物循环过程都与碳密切相关。水体内生物活动与水库水环境变化之间的反馈、水体生态系统与营养元素载荷的相互作用关系以及响应过程是研究水环境变化的基础。其中,水体内部的元素循环、能量流动、CO2动力学与营养状况的关系等都是控制水环境变化的关键过程,碳作为这一切活动的核心元素,对它的研究对认识水环境变化、水生态过程、元素循环以及它们的相互作用具有重要的指示意义。 因此,本研究中选取中国西南喀斯特山区典型的梯级水库作为研究对象,以碳循环为研究主线,于2006年4月、7月、10月和2007年1月对乌江中上游干流已进行梯级开发的六个水库的入库水体、库区水体及出库水体进行一个水文年的采样,对溶解无机碳(DIC)、溶解有机碳(DOC)、颗粒有机碳(POC)、DIC同位素组成(δ13CDIC)和POC同位素组成(δ13CPOC)以及TN、TP、chla、和藻类种类和数量进行了分析,深入探讨了水电梯级开发对河流碳循环的影响,获得以下几点重要认识。这些认识将为我们理解和评价梯级开发对河流水环境的影响提供重要的科学依据: 1、河水化学的水库效应:河流梯级筑坝拦截使得水库水体基本水化学特征发生变化。研究区水化学类型主要为重碳酸盐-碳酸盐Ca组Ⅱ型水。河流经水坝拦截后,库区水位抬升,水库水化学性质表现出随季节变化的特征。水库中水体在春季开始出现水温的分层结构,这种状况持续到夏季和秋季,有效地限制了上下层水体的垂直交换。河流水体经水库作用后,出库水体水温、pH值均降低。除冬季外,各水库出库水体水温均低于入库水体和库区表层水体。水体水化学组成因此出现较为明显的上下差异。Na+、K+、Mg2+、Cl-、SO42-经水库作用而部分被吸收或滞留;而Ca2+、HCO3-和NO3-经水库作用后增加。 2、生物作用的水库效应:研究区水库中,洪家渡水库、引子渡水库和索风营以绿藻为主,处于中营养状态;普定水库和东风水库以硅藻为主,处于轻度富营养状态;乌江渡水库以蓝藻为主,处于富营养状态。总体上表现为水库库龄与水库营养程度正相关,建库时间越长,水库营养程度越高。 3、碳循环的水库效应:水库作用过程使得出库水体中DIC浓度增加,DOC和POC浓度减少。梯级水库作用使得乌江中上游河流体系DIC输出量增加22.18%,而DOC和POC输出量则分别减少18.19%和70.09%。研究区梯级水库是河流—水库体系DIC的“源”、DOC和POC的“汇”。经梯级水库作用后,乌江中上游河流—水库体系经乌江渡水库每年向下游河流输送的DIC(以C计)、DOC、POC通量分别为263.64 kt、12.40 kt、13.86 kt。 总体上,研究区梯级水库是下游河流DIC的“源”,DOC、POC的“汇”。在水体垂直剖面上,DIC浓度随水深的增加而增加,而DOC、POC浓度则随着水深的增加而减小,但由于底部沉积物的再悬浮作用,使得部分剖面中底部水体中DOC、POC浓度增加。溶解无机碳同位素组成(δ13CDIC)对水库作用过程有良好的响应,水库出库水体中δ13CDIC值比入库水体和库区表层水体均偏负,在库区坝前垂直剖面上,δ13CDIC值随着水深的增加而偏负,δ13CPOC值变化规律性较差。从研究结果来看,δ13CDIC值可用于对水库作用过程对水环境的影响进行示踪。 4、水库的温室气体释放:总体上,入库水体中溶解CO2分压(pCO2)低于出库水体。河流经水库截留后,水体中pCO2增高,向大气中释放的CO2增加,成为大气CO2的“源”。在水库内部垂直剖面上,水体中CO2分压随着深度的增加而增大。由于水库为下层泄水,使得出库水体中CO2分压显著高于大气分压,CO2释放通量平均为水库库区表层水体的6.51倍。由此可见,在研究水库作用过程对大气中温室气体的影响时,水库泄水的CO2释放问题需引起极大的重视。
Resumo:
双壳类生物其壳体在生长过程中记录了高分辨率的环境信息(年、季,甚至周),同时双壳类生物具有广泛的地理分布,在海洋和淡水生态系统中均有大量种类的存在并广泛地存在于古地层中,双壳类生物这些特点使其成为古气候古环境研究的理想对象。 现生壳体的就位研究就是对特定环境产物(壳体)的一些环境替代指标(碳、氧同位素、微量元素等)的环境意义的标定。根据“将今论古”观点,这些认识不仅仅是对现生生物壳体本身的认识,其基本原理、基本关系都可以用于过去环境的重建。因此可以说,对于现代生物壳体的相关研究是利用双壳类壳体化石识别和提取古气候环境信息的前提和基础。 然而人们对于双壳类的认识还十分有限,尤其是对现代生物壳体的就位分析研究还不是很多。对壳体碳、氧同位素及各种微量元素的气候环境指示意义还存在很大争议,这严重阻碍了利用古生物壳体进行提取古气候环境信息。我们对现代淡水双壳类生物河蚬(Corbicula fluminea Müller, 1774)进行了相关研究,取得了一些成果,获得了一些有意的结论,为利用古河蚬壳体,乃至其他双壳类壳体化石重建古气候古环境奠定了基础,扫除了一些障碍,它们主要包括: 1 河蚬壳体不同断面上碳、氧同位素的差异及其意义 通过对河蚬壳体不同断面上同位素的研究发现:河蚬壳体碳同位素在同一生长环的不同位置不存在显著的差异,并使得壳体碳同位素变化序列在不同断面上同样不存在显著差异,因此在做碳同位素时间序列研究时可以不考虑不同断面差异的问题,而在取样过程中可以通过延长取样的长度来获得足够量的样品进行碳同位素的测定;河蚬壳体氧同位素在同一生长环不同位置上存在差异,而导致氧同位素变化序列在不同断面上也存在差异,因此在进行壳体就位分析研究时,选取不同断面上氧同位素变化序列对研究结果影响较大,存在壳体断面选择的问题。而在取样过程中取样的长度应控制在一定范围内,避免同一生长环上距离较远位置粉末的混合。 壳体最大生长线的断面不仅方便取样分析和获得详细的信息,更重要的是其同位素记录的主要是水体环境信息,所以选取壳体最大生长线的断面进行壳体就位分析研究是合理的。 2 通过河蚬壳体高分辨率同位素组成与气候、环境参数定量对比研究明确了河蚬壳体碳、氧同位素所指示的气候环境意义 将河蚬壳体氧同位素测定值与理论计算平衡值进行对比研究,发现河蚬壳体与水体在氧同位素上达到平衡,但由于河蚬在冬季停止生长(T< 17 ℃ ),壳体对冬季时期水体信息是没有记录的,总的来说河蚬壳体记录了5月—11月左右的水体信息。河蚬壳体与水体在氧同位素上的平衡使得其成为夏季水体信息的良好替代指标。 壳体碳同位素值比预测平衡值偏负。导致壳体碳同位素不平衡的原因主要有动力学分馏作用和新陈代谢作用。动力学分馏发生在CO2的水化和氢氧化过程中,含有12C和16O 的CO2比含有重同位素的CO2活跃,因此在壳体钙化过程中发生氧、碳同位素的同步分馏,可以造成18O 约4‰和13C约10‰ ~ 15‰的亏损,所以动力学分馏使壳体的δ18O和δ13C成一定的正相关关系,并且这种分馏作用主要存在于快速成骨成壳生物中。虽然壳体的碳、氧同位素显示出一定的正相关性,但是由于壳体氧同位素的平衡,表明动力学分馏作用不是壳体碳同位素偏负的主要原因。新陈代谢作用主要是指壳体在形成中利用了呼吸作用产生的富集12C的CO2,其主要影响壳体的碳同位素,对氧同位素的影响很小甚至可以忽略。本研究河蚬壳体碳同位素的偏负及所有壳体碳同位素时间序列均显示出随壳高增大而负向的变化表明新陈代谢作用的影响是壳体与水体之间碳同位素不平衡的主要因素。壳体碳同位素的不平衡现象将导致直接利用其提取水体信息的不准确性。因此能否以及如何将新陈代谢作用对壳体碳同位素的影响排除出去成为壳体碳同位素研究的焦点。 3 河蚬壳体形成中利用新陈代谢产生的二氧化碳比例的室内养殖研究 室内养殖实验发现:随着养殖水体碳同位素的升高,养殖过程中形成的河蚬(样品A和样品B)其壳体碳同位素也随之升高,表明了δ13CDIC对壳体碳同位素的影响。壳体碳同位素值比预测平衡值偏负,这主要是由于壳体在形成过程中新陈代谢作用产生的二氧化碳的参与造成的。根据计算,壳体A在实验中沉淀部分壳体利用新陈代谢碳的比例(M值)为24%~43%,平均值为33%;壳体B为33%~75%,平均值为58%。M值随生物的生长呈下降变化,这与先前的一些研究认为M值随生物的生长呈升高变化并不一致,这说明在实验中河蚬主要是通过增加对DIC的吸收和利用来满足壳体对物质量增加的需求,而造成这种现象的原因可能是由于室内养殖环境变化情况与野外存在显著差异。个体差异以及室内养殖条件与野外情况的区别使得无法将δ13Cmeta对壳体的影响分离出去,因此只有通过对大量野外河蚬个体进行研究才能判断出是否可以以及如何将新陈代谢作用对壳体碳同位素的影响排除。 4 花溪地区河蚬壳体利用新陈代谢产生的二氧化碳比例的研究 生物软体碳同位素(δ13Ctissues)可以用来替代生物新陈代谢作用产生的碳的同位素(δ13Cmeta)组成,因此对河蚬δ13Ctissues进行了相关研究。花溪地区河蚬软体的个体样品与若干壳高接近的混合样品在有机碳同位素(δ13Ctissues)上差别很小,说明壳高大小接近的河蚬个体,软体有机碳同位素之间的差异很小,因此在进行相关研究中不需要对每一个河蚬个体都进行软体碳同位素的测定。不同大小个体之间δ13Ctissues 存在一定的差异,表现出随着壳高的增大,δ13Ctissues 先降低后增高的变化趋势, 可能表明河蚬在生长过程中其食性会发生一定的变化。经过盐酸处理的样品与未处理的样品在δ13Ctissues 上并未显示出显著的差异,这说明样品中无机碳酸盐岩的含量很低,因此对δ13Ctissues 的测定影响很小,因此以后在处理相同样品时可以省去加盐酸这一步骤。河蚬与河蚌在δ13Ctissues 十分接近,而田螺与二者差异显著,这说明同为双壳类的河蚬和河蚌在食性上比较一致,并且与腹足类的田螺存在明显的不同。 河蚬壳体碳同位素组成与壳高显示出显著的负相关关系,这主要是由于生物新陈代谢作用的结果。因此,壳体碳同位素组成与壳高之间负相关关系可以看做是碳同位素生命效应存在的一种指示剂。 花溪地区河蚬壳体利用新陈代谢碳的比例,M值变化范围为19.8% ~26.8%,平均值为22.6 %± 2.5,并且M值与壳高具有显著的正相关性,M = 0.39H + 17.36(n = 18, R2 = 0.74),这与对很多野生壳体的研究结果是一致的。不同物种之间以及同种生物在不同地区之间,M与壳高的回归方程是不同的,但就花溪地区而言,新陈代谢作用对壳体碳同位素组成的影响利用上述回归方程是可以去除的,从而实现利用古河蚬壳体提取古水体信息的目的。因此利用现代壳体建立M与壳高之间的回归方程是利用古壳体化石提取水体信息的前提和基础。 5壳体碳同位素对不同环境条件的记录的室内养殖研究 不同养殖水箱中(不同的饲养环境),河蚬壳体碳同位素组成存在较大差别,这种差别主要是由于喂养的食物在碳同位素组成(控制水体碳同位素)上存在较大差别造成的。虽然壳体碳同位素组成记录的不是水体δ 13CDIC绝对值的变化,但它反映了不同环境中水体信息的差异和变化趋势,因此壳体碳同位素可以用作δ 13CDIC定性的替代指标,另外壳体碳同位素还可以用来区分来源不同的种群或个体,而这对于鉴定生物属种、判断来源和反演古环境都是十分有意义的。 实验中河蚬壳体与无机成因文石相比, 碳同位素组成平均偏负6.16 ‰,证明了生物新陈代谢影响的存在,这一恒定分馏值的出现主要反映了实验中壳体样品数量和大小分布问题,而不能说明河蚬壳体碳同位素是水体δ 13CDIC的定量替代指标。
Resumo:
沉积物表层几厘米范围经常呈现某些微量金属元素富集的现象,过去常笼统地认为这是工业革命以来人为污染不断加剧的证据。但近来的研究却证明强烈的早期成岩作用可以在一定程度上造成微量金属元素在沉积物中的再迁移现象,使得其环境记录失真。因此沉积物中元素分布记录不能完全反映对流域输入的物质组成特征。另外,在一定条件下,沉积物中部分金属元素也可再次向上覆水体释放,造成“二次污染”问题,严重威胁到湖泊/水库的水质安全,成为埋藏在湖泊深处的一颗“定时炸弹”。各种地球化学过程在沉积物一水界面附近造成的重金属元素的源/汇效应因此日益受到人们的重视。近年来贵州红枫湖水质季节性恶化事件频繁出现,作为贵阳市饮用水源的阿哈湖水质也开始出现季节性恶化趋势。紧迫的环境问题及重要的科学意义促使我们系统开展了红枫湖、啊哈湖沉积物一水界面微量金属的地球化学行为研究。两湖都是黔中地区人工水库,具有岩溶湖泊的共性,也具有明显的区别。红枫湖湖水具有典型的岩溶水化学特征,湖水中度富营养化;而啊哈湖受矿山废水的影响,同时由于近年的人工石灰投放等原因,造成该湖湖水具有极硬水、硫酸盐型水特征,矿化度达到600tng/L。我们对上述两湖进行了详细研究,获得了如下的研究成果:1.硫酸盐还原细菌(SRB)及铁还原细菌(DIRB)的计数直观地指示了有机质早期成岩过程中各电子受体依次利用的分带性:即硫还原(锰还原)叶铁还原。孔隙水中硫酸根及溶解铁分布与SRB和D工RB的分布吻合。沉积物孔柱的模拟实验、各类还原性微生物计数及与孔隙水中铁锰、硫酸根分布的综合分析证实了微生物的作用是厌氧环境中各种还原反应的不可缺少的因素,界面附近氧含量的变化是引起水质恶化的基本外因。模拟实验的结果还解释了铁、锰、硫在季节性缺氧湖泊中的循环机理。2.微生物计数及生物大分子分析证实了上层沉积物(0-10厘米)是微生物活跃最为强烈的区域,易降解有机质在此区域被降解。红枫湖沉积物有机质降解持续的深度较深〔达到10cm),而啊哈湖沉积物有机质降解持续深度较浅,仅为4厘米,这主要是由于两湖都是季节性厌氧型湖泊,红枫湖在缺氧季节,有机质厌氧降解所需的电子受体迅速消耗,使得缺氧季节该湖有机质降解速率相对缓慢;啊哈湖受到大量煤矿废水注入,水体及沉积物中硫酸根、铁锰含量异常高,并在厌氧季节里为微生物厌氧呼吸提供充足的电子受体,因而易降解部分有机质在表层迅速被氧化,而且该湖沉积速率相对较慢,有机质有相对充裕的时间在上层被降解,避免了被掩埋的命运。3.啊哈湖沉积物孔隙水及界面水δ13CDIC及DIC浓度的分析,显示啊哈湖沉积物产甲烷过程很弱或不明显。这主要是受到硫酸盐还原作用的抑制。从δ34SSO42-SO42-相关关系及硫酸盐还原菌分布特征,可以在深度上划分为两种还原过程及硫同位素分馏过程:慢速还原阶段(6厘米以下),硫同位素分馏程度较大,最大分馏达13.71%。分馏因子约为1.024-1.026之间;快速还原阶段(0-6厘米),硫同位素具有明显分馏,最大达到38‰,这与快速还原过程硫同位素分馏较小的规律相反,主要原因是由于表层同时出现有还原态硫的氧化反应.产生较负的δ34S-so41,δ34S-SO42--SO42-的变化反映出混合过程。通过研究我们进一步还推断,采样点沉积物下部还有煤矿硫源的输入。4.两湖沉积物中铁、锰、硫的还原作用发生位置都具有季节性沿沉积深度上下迁移的特性,部分微量金属元素扩散通量因此发生季节性变化。受沉积物中铁锰含量的控制,红枫湖沉积物一水界面铁锰循环作用比啊哈湖弱。啊哈湖锰含量很高,导致界面附近锰的循环剧烈且远强于铁的循环,并在一定程度上引起部分微量金属在沉积物上层强烈富集。5.通过红枫湖后五沉积物剖面研究,我们发现各种微量元素由于其自身不同的地球化学性质差异,早期成岩过程对其在沉积物中的垂直分布特征的改造程度是不同的。①锰具有明显的向上富集趋势,铁在沉积物中的分布特征的后期改造作用就比较弱。②钻、镍分布的后期改造程度与铁相似,从总量来看再迁移程度比较弱。③铜、锌在早期成岩过程中逐渐向沉积物中上部富集,这主要是与铜锌强烈的亲硫性引起的。钥的表层富集现象最为明显,沉积后再迁移效应显著。由其含量在上层沉积物中的两重峰值,可以指示界面剧烈的锰循环及界面下硫酸盐还原作用对它的联合控制。6.与红枫湖相比,啊哈湖沉积物金属元素再迁移特征有很大的不同:①通过部分微量金属元素地球化学相态分析,各相态微量金属分布主要服从其总量分布特征。②沉积物稀土配分模式明确指示了啊哈湖成湖基底的位置,即沉积物-水界面下18-19厘米以下。③通过Ti、Zr、ΣREE+Y等的分析也显示了成湖前原始基底的存在位置,同时它们在沉积物中的含量变化特征还反映了该湖扩容后陆源输入的减少。④在沉积深度上铁锰及部分微量金属元素出现明显的分离现象。⑤通过相关性分析,Fe与Cu,U、Mn与Pb,C0,Ni,Cd,Zn等都存在很好的相关性,表明它们之间具有相似的界面地球化学行为。Fe型元素与Mn型元素分布差异的原因可以简约的概括为:锰的界面循环极为强烈,导致再迁移程度很高;而铁的循环相对较弱,又容易受到上层硫酸盐还原作用的抑制,因此再迁移程度不高。此外,由岩溶地区湖泊较强的酸中和能力及近年来的人为石灰投放,沉淀PH不同导致微量金属元素间发生分离,引起下游大坝处金属元素的输入差异。因此,啊哈湖大坝附近沉积物中微量金属元素的分布特征应受到沉积后再迁移和受 pH控制的煤矿废水输送差异联合制约。
Resumo:
稳定碳同位素作为环境替代指标己经在不同的载体上得到了广泛运用,例如树轮。泥炭、碳酸盐岩等。目前岩溶学者也逐渐开始运用洞穴次生化学沉积物中的稳定碳同位素探讨古气候环境的变迁史,例如植被的更替、大气CO。的浓度变化等。然而由于缺乏该指标在岩溶洞穴系统中形成机理的研究,使得该环境替代指标的运用非常有限。本论文在贵州岩溶地区选择了上覆植被分别为原始森林。灌丛草坡、草坡和石漠化的凉风洞、七星们、犀牛洞、将军们作为研究对象,对岩溶洞穴系统稳定碳同位素的时空演化规律进行了详细的分析,得出以下几点认识:一.洞穴系统稳定碳同位素对地表气候环境的响应通过对4个不同生境洞穴系统的研究,认为洞穴系统稳定碳同位素可以很好地将原始森林植被同其它植被类型区分开;但是不能很好地区分植被退化的过渡类型如灌丛、草坡以及石漠化等。表明石笋的δ13C值在一定情况下可以用来探讨地表植被的变化。但要做更精确的反演需要在加深机理方面的研究。通过同一洞穴不同滴水点的对比研究,发现不同滴水点沉积物的稳定碳同位素存在差异,并且差异还比较大。表明用石笋的δ13C值对古气候环境进行重建时需要慎重考虑滴水点的详细情况。在这种情况下,应该对稳定碳同位素的地球化学过程进行详细研究,尤其应该结合水化学数据对水的运移途径进行深入研究,才能合理地运用稳定碳同位素对洞顶的植被情况进行正确的反演。洞穴滴水和塘中水DICδ13C值和月累积降雨量成相反的变化趋势;地表泉水、土壤水DICδ13C值。土壤CO2、土壤呼吸δ13C值和月累积降雨量的变化在多数时候具有一致的变化趋势。总体而言,洞穴系统水样DICδ13C值对月平均气温的响应不是很明显。只有洞穴塘中水DICδ13C值和月平均气温成相反的变化规律;土壤呼吸CO2δ13C值对月均温响应较为明显:月平均温度越高,土壤呼吸CO2δ13C值越偏轻,反映了温度较高的时候土壤层中的生物活动较强烈。二.岩溶洞穴系统稳定碳同位素的时间演化犀牛洞、将军洞。七星洞10月份植被δ13C值样品的δ13C值比7月份样品的δ13C值偏重。犀牛洞和将军洞土壤空气CO。的δ13C值在8月份出现了一个峰值,以前在清镇红枫湖生态站草地土壤剖面所作的工作8月份的值也同样偏重。在6月份时,凉风洞和七星洞存在一个较为明显的低值,与微生物和植物的强烈呼吸作用有关。土壤呼吸气CO2的δ13C值在6月份出现了明显的低值,和土壤CO。的变化趋势一致。4个洞穴空气CO2的δ13C值在8、9月份有一个低值。七星洞和外界的连通性最好,其洞穴空气CO2δ13C值随时间的变化最不明显,而凉风洞与夕十界的连通性最差,洞穴空气CO2δ13C值的变化幅度最大。土壤水DIC的δ13C值8月份存在一个峰值,在9月份的时候存在一个低值。七星洞地表泉水DIC的δ13C值自6月份开始有逐渐偏重的趋势,到8月份达到一个不甚明显的峰,这个峰值在凉风洞的表层泉中也略有体现。和土壤水比较,地表泉水的不同点在于低值不出现在9月份,而是出现在10月份,相对而言滞后1个月。原因可能是表层泉水所到达的深度比土壤水深;土壤强烈呼吸作用的响应要比土壤水慢。各个洞穴的滴7RDICδ13C值随时间退推移出现了不同的变化规律,可能与滴水的来源和途径不同有关。4个洞穴塘中水DIC的δ13C值统一在7月份达到了最低值;之后DIC的δ13C值逐渐偏重。三.岩溶洞穴系统稳定碳同位素的空间演化植被样不同部位的δ13C值总体上逐渐偏重的顺序是皮一叶一枝一根~干,说明植物不同部位的稳定碳同位素存在差异。随着凉风洞一七星洞一犀牛4同一将军洞的顺序,植被δ13C值逐渐变重;反映了地表植被由C3植物向C3+C4植物的过渡,指示了生态环境由原始森林→石漠化方向的退化。土壤有机碳的δ13C值基本继承地表植物δ13C值的特征。没有发生植被更替上壤剖面上有机碳的δ13C值随着深度的增加逐渐偏重;植被发生了变化的土壤剖面则可能出现与正常规律相反的变化情况。土壤剖面上CO2的δ13C值自地表;句下逐渐变轻,在一定深度后大致趋于稳定;土壤呼吸CO2δ13C值位于土壤CO2δ13C值的变化范围;土壤呼吸CO2δ13C值的变化规律和植被δ13C值的变化在空间上具有一致性。土壤水DIC的δ13C值比土壤CO2值偏重;泉水DIC的δ13C值比土壤水DIC的δ13C值偏重,原因是泉水可能己经渗入到基岩层之后再出露到地表,已经混入了部分基岩无机碳的成分。四个研究洞穴系统盖板基岩的δ13C值变化范围大约在2-3‰之间。凉风洞和犀牛洞不同滴水点滴水的δ13C值相对比较稳定,七星们和将军洞的变化比较大。洞穴塘中水DIC的δ13C值和洞穴滴水相比明显偏重,原因为洞穴塘中水经历了强烈的蒸发作用;满后水比滴前水整体偏重。从洞日往内洞穴空气CO2的δ13C值逐渐偏轻,并且洞穴空气CO2δ13C值继承了洞穴水样DICδ13C值的变化趋势。洞穴化学次生沉积物的δ13值:同一个洞穴中不同滴水点化学沉积物的δ13C值存在差异,但是和滴水DIC的δ13C值相对应,反映了沉积物δ13C值对洞穴滴水DICδ13C值的继承,沉积物δ13C值比滴水DICδ13C值偏重。最新鲜沉积物和比较老的沉积物之间的对比偏轻1-2‰,沉积物中的δ13C值有可能发生沉积期后的变化。
Resumo:
中国西南喀斯特地区有突出的地球化学敏感性和生态环境脆弱性等特征,其中水环境污染是喀斯特地区所面临的极其严重的生态与环境问题。水环境生源物质循环过程对于人类生存环境质量的保护和提高有着直接的联系,由于环境体系受多种控制因素影响,利用多同位素方法讨论单一环境体系中物质循环过程和生态环境效应已成为同位素地球化学发展的一个重要趋势。碳、氮同位素已被广泛用于探讨和解决当前的一些重大环境问题,如生源要素生物地球化学对人为污染物的响应、温室气体的来源、湖泊富营养化、地下水硝酸盐污染等。为此本论文利用稳定同位素技术(13C、I5N、18O),以喀斯特城市地下水为主要研究对象,对贵阳雨水中的C、N沉降过程、贵阳/遵义地下水C、N同位素地球化学进行了初步研究。通过以上研究,得到以下的主要认识。1.探讨了贵阳雨水中碳沉降的年变化特征,结果表明贵阳雨水DOC平均值为3.76mg/L,POc平均值为0.54mg/L,含量季节间变化不显著。雨水中DOc与PH呈负相关关系,表明有机碳中酸性成份对酸雨有一定贡献。δ13C-POC取值范围在(-27.0,-24.0‰)之间,季节间差异不大,结合已有研究结果表明雨水中颗粒有机碳主要来源于雨水所冲刷的本地大气颗粒物。2.探讨了贵阳雨水无机氮沉降的年变化特征,结果表明贵阳城区雨水中的NH4+、NO3-、δ15N-NH4+,δ15N-NO3-,δ18O-NO3-,季节性差别都不大。NH4+主要来源于土壤中NH3挥发以及大气颗粒物中按的洗脱,而硝酸盐可能主要来源于燃煤和机动车的排放等,同时气候是影响同位素组成差异性表现的一个重要影响因素。3.初步分析了贵阳与遵义地下水/地表水主要水化学成分,结果证实水体水化学组成主要受研究区水文地质背景控制,即阳离子主要以Ca2+,Mg2+为主,而阴离子以HCO3-,SO42-离子为主。但是有部分水样有较高的人为输入物质K+,Na+,Cl-和NO3-,表明人为活动在研究区内已对地表水/地下水产生一定影响。4.利用碳同位素较好地示踪了地下水溶解无机碳季节变化的主要规律,地下水夏季的DIC含量明显低于冬季DIC含量,这是由于大量降水的稀释作用引起的。地下水DIC夏季一般比冬季更富集12C,表明夏季地下水中生物成因无机碳贡献增加。经计算表明贵阳/遵义地下水来源于碳酸盐风化的无机碳比重大多数大于50%,表明硫酸可能参与风化过程。5.较为系统地探讨了地下水/地表水中有机碳的冬季/夏季演化规律以及受影响因素,地下水大多数样品DOC和POC含量不高,个别受污染样品明显具有较高有机碳含量。大部分夏季地下水δ13C-POC明显大于冬季,表明夏季地下水颗粒有机碳受外源(C4植物碎屑)输入影响。地表水TOC(DOC+POC)与人为输入离子[K+Na++Cl-]呈一定的正相关关系,表明有机碳主要受人为污染影响。6.以贵阳为例,根据δ13CDIC等势图、结合主要水化学特征在空间上的分布可知,贵阳市区中部,东北部及西郊农业区地下水受污染较为严重。表明一定条件下,碳同位素组成可以用来指示区域地下水受人为活动影响范围。7.通过对地下水三氮分析初步掌握了地下水氮污染的基本特征,地下水中NO3-是最主要的无机氮形态,NH4+和NO2-含量大多较低,地下水中具有高NO2-与NH4+的水样比较分散,表明点源污染是主要的。8.利用氮氧同位素示踪了贵阳地下水硝酸盐污染来源的季节变化,同时证实了部分地下水发生反硝化。冬季硝酸盐相对夏季含量较低,并且目SN与夕80的平均值都相对较高,表明夏季受外源氮污染明显,郊区地下水硝酸盐主要受硝态氮肥污染影响,城区地下水硝酸盐污染严重,城市生活排泄物是主要的氮污染源;硝酸盐氮氧同位素联同按氮同位素等可以得知部分地下水中存在明显的反硝化作用。9.利用氮同位素取值分布和季节间频度分布变化初步讨论了遵义地下水硝酸盐污染来源的季节变化。遵义含NO3-较高的地下水主要分布在市区、茅草铺(市东北郊)和新店子一忠庄一带(市东南郊)。夏季地下水硝酸盐δ15N的平均值明显低于冬季,一表明夏季地下水受农业化肥等低δ15N值氮污染源污染。10.两城区地下水受点源污染为主,在局部区域有向含水层面源污染转化的趋势。喀斯特城区地下水中C、N物质的循环对环境变化响应较快,同时受不同区域降雨过程和土壤营养物质过程影响而表现出一定的差异性。
Resumo:
本文对草海湖系统中主要含碳物质(湖水DIC、水生植物、沉积物有机质、沉积物碳酸盐)的稳定碳同位素组成进行了分析,其同位素组成分别为:-3.7‰--10.6‰,-15.5‰--20‰,-20.5‰--26.7‰ -4.4‰--13.1‰。结果表明:草海湖水DIC的稳定碳同位素组成在整个湖泊中变化较大,草海中主要水生植物的稳定碳同位素组成明显重于一般的陆生植物(C3型),而且湖水DIC、沉积物有机质和沉积物碳酸盐的同位素组成均呈现随深度加深逐渐变轻的趋势,表明在草海这样一个水生植物繁茂的浅水富氧湖泊中,光合-呼吸作用和有机质降解对整个湖泊体系中主要含碳物质的碳同位素组成具有决定性的作用。最后,利用碳同位素组成值进行质量平衡计算,建立了草海区域碳循环的简单模式。