花溪地区河蚬壳体氧、碳同位素研究
Data(s) |
31/05/2009
|
---|---|
Resumo |
双壳类生物其壳体在生长过程中记录了高分辨率的环境信息(年、季,甚至周),同时双壳类生物具有广泛的地理分布,在海洋和淡水生态系统中均有大量种类的存在并广泛地存在于古地层中,双壳类生物这些特点使其成为古气候古环境研究的理想对象。 现生壳体的就位研究就是对特定环境产物(壳体)的一些环境替代指标(碳、氧同位素、微量元素等)的环境意义的标定。根据“将今论古”观点,这些认识不仅仅是对现生生物壳体本身的认识,其基本原理、基本关系都可以用于过去环境的重建。因此可以说,对于现代生物壳体的相关研究是利用双壳类壳体化石识别和提取古气候环境信息的前提和基础。 然而人们对于双壳类的认识还十分有限,尤其是对现代生物壳体的就位分析研究还不是很多。对壳体碳、氧同位素及各种微量元素的气候环境指示意义还存在很大争议,这严重阻碍了利用古生物壳体进行提取古气候环境信息。我们对现代淡水双壳类生物河蚬(Corbicula fluminea Müller, 1774)进行了相关研究,取得了一些成果,获得了一些有意的结论,为利用古河蚬壳体,乃至其他双壳类壳体化石重建古气候古环境奠定了基础,扫除了一些障碍,它们主要包括: 1 河蚬壳体不同断面上碳、氧同位素的差异及其意义 通过对河蚬壳体不同断面上同位素的研究发现:河蚬壳体碳同位素在同一生长环的不同位置不存在显著的差异,并使得壳体碳同位素变化序列在不同断面上同样不存在显著差异,因此在做碳同位素时间序列研究时可以不考虑不同断面差异的问题,而在取样过程中可以通过延长取样的长度来获得足够量的样品进行碳同位素的测定;河蚬壳体氧同位素在同一生长环不同位置上存在差异,而导致氧同位素变化序列在不同断面上也存在差异,因此在进行壳体就位分析研究时,选取不同断面上氧同位素变化序列对研究结果影响较大,存在壳体断面选择的问题。而在取样过程中取样的长度应控制在一定范围内,避免同一生长环上距离较远位置粉末的混合。 壳体最大生长线的断面不仅方便取样分析和获得详细的信息,更重要的是其同位素记录的主要是水体环境信息,所以选取壳体最大生长线的断面进行壳体就位分析研究是合理的。 2 通过河蚬壳体高分辨率同位素组成与气候、环境参数定量对比研究明确了河蚬壳体碳、氧同位素所指示的气候环境意义 将河蚬壳体氧同位素测定值与理论计算平衡值进行对比研究,发现河蚬壳体与水体在氧同位素上达到平衡,但由于河蚬在冬季停止生长(T< 17 ℃ ),壳体对冬季时期水体信息是没有记录的,总的来说河蚬壳体记录了5月—11月左右的水体信息。河蚬壳体与水体在氧同位素上的平衡使得其成为夏季水体信息的良好替代指标。 壳体碳同位素值比预测平衡值偏负。导致壳体碳同位素不平衡的原因主要有动力学分馏作用和新陈代谢作用。动力学分馏发生在CO2的水化和氢氧化过程中,含有12C和16O 的CO2比含有重同位素的CO2活跃,因此在壳体钙化过程中发生氧、碳同位素的同步分馏,可以造成18O 约4‰和13C约10‰ ~ 15‰的亏损,所以动力学分馏使壳体的δ18O和δ13C成一定的正相关关系,并且这种分馏作用主要存在于快速成骨成壳生物中。虽然壳体的碳、氧同位素显示出一定的正相关性,但是由于壳体氧同位素的平衡,表明动力学分馏作用不是壳体碳同位素偏负的主要原因。新陈代谢作用主要是指壳体在形成中利用了呼吸作用产生的富集12C的CO2,其主要影响壳体的碳同位素,对氧同位素的影响很小甚至可以忽略。本研究河蚬壳体碳同位素的偏负及所有壳体碳同位素时间序列均显示出随壳高增大而负向的变化表明新陈代谢作用的影响是壳体与水体之间碳同位素不平衡的主要因素。壳体碳同位素的不平衡现象将导致直接利用其提取水体信息的不准确性。因此能否以及如何将新陈代谢作用对壳体碳同位素的影响排除出去成为壳体碳同位素研究的焦点。 3 河蚬壳体形成中利用新陈代谢产生的二氧化碳比例的室内养殖研究 室内养殖实验发现:随着养殖水体碳同位素的升高,养殖过程中形成的河蚬(样品A和样品B)其壳体碳同位素也随之升高,表明了δ13CDIC对壳体碳同位素的影响。壳体碳同位素值比预测平衡值偏负,这主要是由于壳体在形成过程中新陈代谢作用产生的二氧化碳的参与造成的。根据计算,壳体A在实验中沉淀部分壳体利用新陈代谢碳的比例(M值)为24%~43%,平均值为33%;壳体B为33%~75%,平均值为58%。M值随生物的生长呈下降变化,这与先前的一些研究认为M值随生物的生长呈升高变化并不一致,这说明在实验中河蚬主要是通过增加对DIC的吸收和利用来满足壳体对物质量增加的需求,而造成这种现象的原因可能是由于室内养殖环境变化情况与野外存在显著差异。个体差异以及室内养殖条件与野外情况的区别使得无法将δ13Cmeta对壳体的影响分离出去,因此只有通过对大量野外河蚬个体进行研究才能判断出是否可以以及如何将新陈代谢作用对壳体碳同位素的影响排除。 4 花溪地区河蚬壳体利用新陈代谢产生的二氧化碳比例的研究 生物软体碳同位素(δ13Ctissues)可以用来替代生物新陈代谢作用产生的碳的同位素(δ13Cmeta)组成,因此对河蚬δ13Ctissues进行了相关研究。花溪地区河蚬软体的个体样品与若干壳高接近的混合样品在有机碳同位素(δ13Ctissues)上差别很小,说明壳高大小接近的河蚬个体,软体有机碳同位素之间的差异很小,因此在进行相关研究中不需要对每一个河蚬个体都进行软体碳同位素的测定。不同大小个体之间δ13Ctissues 存在一定的差异,表现出随着壳高的增大,δ13Ctissues 先降低后增高的变化趋势, 可能表明河蚬在生长过程中其食性会发生一定的变化。经过盐酸处理的样品与未处理的样品在δ13Ctissues 上并未显示出显著的差异,这说明样品中无机碳酸盐岩的含量很低,因此对δ13Ctissues 的测定影响很小,因此以后在处理相同样品时可以省去加盐酸这一步骤。河蚬与河蚌在δ13Ctissues 十分接近,而田螺与二者差异显著,这说明同为双壳类的河蚬和河蚌在食性上比较一致,并且与腹足类的田螺存在明显的不同。 河蚬壳体碳同位素组成与壳高显示出显著的负相关关系,这主要是由于生物新陈代谢作用的结果。因此,壳体碳同位素组成与壳高之间负相关关系可以看做是碳同位素生命效应存在的一种指示剂。 花溪地区河蚬壳体利用新陈代谢碳的比例,M值变化范围为19.8% ~26.8%,平均值为22.6 %± 2.5,并且M值与壳高具有显著的正相关性,M = 0.39H + 17.36(n = 18, R2 = 0.74),这与对很多野生壳体的研究结果是一致的。不同物种之间以及同种生物在不同地区之间,M与壳高的回归方程是不同的,但就花溪地区而言,新陈代谢作用对壳体碳同位素组成的影响利用上述回归方程是可以去除的,从而实现利用古河蚬壳体提取古水体信息的目的。因此利用现代壳体建立M与壳高之间的回归方程是利用古壳体化石提取水体信息的前提和基础。 5壳体碳同位素对不同环境条件的记录的室内养殖研究 不同养殖水箱中(不同的饲养环境),河蚬壳体碳同位素组成存在较大差别,这种差别主要是由于喂养的食物在碳同位素组成(控制水体碳同位素)上存在较大差别造成的。虽然壳体碳同位素组成记录的不是水体δ 13CDIC绝对值的变化,但它反映了不同环境中水体信息的差异和变化趋势,因此壳体碳同位素可以用作δ 13CDIC定性的替代指标,另外壳体碳同位素还可以用来区分来源不同的种群或个体,而这对于鉴定生物属种、判断来源和反演古环境都是十分有意义的。 实验中河蚬壳体与无机成因文石相比, 碳同位素组成平均偏负6.16 ‰,证明了生物新陈代谢影响的存在,这一恒定分馏值的出现主要反映了实验中壳体样品数量和大小分布问题,而不能说明河蚬壳体碳同位素是水体δ 13CDIC的定量替代指标。 |
Identificador | |
Idioma(s) |
中文 |
Fonte |
花溪地区河蚬壳体氧、碳同位素研究.闫慧[d].中国科学院地球化学研究所,2009.20-25 |
Palavras-Chave | #河蚬 #碳同位素 #氧同位素 #新陈代谢作用 #双壳类 #花溪 |
Tipo |
学位论文 |