114 resultados para Cyclotomic fields
Resumo:
In this paper, we present an exact higher-order asymptotic analysis on the near-crack-tip fields in elastic-plastic materials under plane strain, Mode I. A four- or five-term asymptotic series of the solutions is derived. It is found that when 1.6 < n less-than-or-equal-to 2.8 (here, n is the hardening exponent), the elastic effect enters the third-order stress field; but when 2.8< n less-than-or-equal-to 3.7 this effect turns to enter the fourth-order field, with the fifth-order field independent. Moreover, if n>3.7, the elasticity only affects the fields whose order is higher than 4. In this case, the fourth-order field remains independent. Our investigation also shows that as long as n is larger than 1.6, the third-order field is always not independent, whose amplitude coefficient K3 depends either on K1 or on both K1 and K2 (K1 and K2 arc the amplitude coefficients of the first- and second-order fields, respectively). Firmly, good agreement is found between our results and O'Dowd and Shih's numerical ones[8] by comparison.
Resumo:
A HIGHER-ORDER asymptotic analysis of a stationary crack in an elastic power-law hardening material has been carried out for plane strain, Mode 1. The extent to which elasticity affects the near-tip fields is determined by the strain hardening exponent n. Five terms in the asymptotic series for the stresses have been derived for n = 3. However, only three amplitudes can be independently prescribed. These are K1, K2 and K5 corresponding to amplitudes of the first-, second- and fifth-order terms. Four terms in the asymptotic series have been obtained for n = 5, 7 and 10; in these cases, the independent amplitudes are K1, K2 and K4. It is found that appropriate choices of K2 and K4 can reproduce near-tip fields representative of a broad range of crack tip constraints in moderate and low hardening materials. Indeed, fields characterized by distinctly different stress triaxiality levels (established by finite element analysis) have been matched by the asymptotic series. The zone of dominance of the asymptotic series extends over distances of about 10 crack openings ahead of the crack tip encompassing length scales that are microstructurally significant. Furthermore, the higher-order terms collectively describe a spatially uniform hydrostatic stress field (of adjustable magnitude) ahead of the crack. Our results lend support to a suggestion that J and a measure of near-tip stress triaxiality can describe the full range of near-tip states.
Resumo:
Plastic stress-strain fields of two types of steel specimens loaded to large deformations are studied. Computational results demonstrate that, owing to the fact that the hardening exponent of the material varies as strain enlarges and the blunting of the crack tip, the well known HRR stress field in the plane strain model can only hold for the stage of a small plastic strain. Plastic dilatancy is shown to have substantial effects on strain distributions and blunting. To justify the constitutive equations used for analysis and to check the precision of computations, the load-deflection of a three-point bend beam and the load-elongation of an axisymmetric bar notched by a V-shaped cut were tested and recorded. The computed curves are in good accordance with experimental data.
Resumo:
Using the approach of local expansion, we analyze the magnetostatic relations in the case of conventional turbulence. The turbulent relations are obtained consisten tly for themomentum equation and induction equation of both the average and fluctuation relations.In comparison with the magnetostatic relations as discussed usually, turbulent fluctuationfields produce forces, one of which 1/(4π)(α1×B0)×B0 may have parallel and perpendicular components in the direction of magnetic field, the other of which 1/(4π)K×B0 is introduced by the boundary value of turbulence and is perpendicular to the magnetic field. In the case of 2-dimensional configuration of magnetic field, the basic equation will be reduced into a second-order elliptic equation, which includes some linear and nonlinear terms introduced by turbulent fluctuation fields. Turbulent fields may change the configuration of magnetic field and even shear it non-uniformly. The study on the influence of turbulent fields is significant since they are observed in many astrophysical environments.
Resumo:
In Paper I (Hu, 1982), we discussed the the influence of fluctuation fields on the force-free field for the case of conventional turbulence and demonstrated the general relationships. In the present paper, by using the approach of local expansion, the equation of average force-free field is obtained as (1+b)×B 0=(#x002B;a)B 0#x002B;a (1)×B 0#x002B;K. The average coefficientsa,a (1),b, andK show the influence of the fluctuation fields in small scale on the configurations of magnetic field in large scale. As the average magnetic field is no longer parallel to the average electric current, the average configurations of force-free fields are more general and complex than the usual ones. From the view point of physics, the energy and momentum of the turbulent structures should have influence on the equilibrium of the average fields. Several examples are discussed, and they show the basic features of the fluctuation fields and the influence of fluctuation fields on the average configurations of magnetic fields. The astrophysical environments are often in the turbulent state, the results of the present paper may be applied to the turbulent plasma where the magnetic field is strong.
Resumo:
The influences of the fluctuation fields are important in many astrophysical environments as shown by the observations, and can not be neglected. On the basis of the first-order smoothing approximation, in the present paper, we demonstrate the magnetostatic equations for both the cases of the conventional turbulence aud the random waves, and discuss the consistent conditions of the equations. In the static problem, the fluctuation Lorentz force(▽×δB)×δB influences the large-scale configurations of magnetic field. To study this influence in detail is quite necessary for the explanations of the observation features, especially for the astrophysical environments where the magnetic fields, including the fluctuation fields, are the dominant factors in the equilibrium of momentum and energy.
Resumo:
In this paper, the real-time deformation fields are observed in two different kinds of hole-excavated dog-bone samples loaded by an SHTB, including single hole sample and dual holes sample with the aperture size of 0.8mm. The testing system consists of a high-speed camera, a He-Ne laser, a frame grabber and a synchronization device with the controlling accuracy of I microsecond. Both the single hole expanding process and the interaction of the two holes are recorded with the time interval of 10 mu s. The observed images on the sample surface are analyzed by newly developed software based on digital correlation theory and a modified image processing method. The 2-D displacement fields in plane are obtained with a resolution of 50 mu m and an accuracy of 0.5 mu m. Experimental results obtained in this paper are proofed, by compared with FEM numerical simulations.
Resumo:
When designing deep ocean structures, it is necessary to estimate the effects of internal waves on the platform and auxiliary parts such as tension leg, riser and mooring lines. Up to now, only a few studies are concerned with the internal wave velocity fields. By using the most representative two-layer model, we have analyzed the behavior of velocity field induced by interfacial wave in the present paper. We find that there may exist velocity shear of fluid particles in the upper and lower layers so that any structures in the ocean are subjected to shear force nearby the interface. In the meantime, the magnitude of velocity for long internal wave appears spatially uniform in the respective layer although they still decay exponentially. Finally, the temporal variation for Stokes and solitary waves are shown to be of periodical and pulse type.
Resumo:
We propose an experimentally feasible scheme to generate various types of entangled states of light fields by using beam splitters and single-photon detectors. Two beams of light fields are incident on two beam splitters respectively with each beam being asymmetrically split into two parts in which one part is supposed to be so weak that it contains at most one photon. We let the two weak output modes interfere at a third beam splitter. A conditional joint measurement on both weak output modes may result in an entanglement between the other two output modes. The conditions for the maximal entanglement are discussed based on the concurrence. Several specific examples are also examined.
Resumo:
The ordinary differential magnetic field line equations are solved numerically; the tokamak magnetic structure is studied on Hefei Tokamak-7 Upgrade (HT-7U) when the equilibrium field with a monotonic q-profile is perturbed by a helical magnetic field. We find that a single mode (m, n) helical perturbation can cause the formation of islands on rational surfaces with q = m/n and q = (m +/- 1, +/- 2, +/- 3,...)/n due to the toroidicity and plasma shape (i.e. elongation and triangularity), while there are many undestroyed magnetic surfaces called Kolmogorov-Arnold-Moser (KAM) barriers on irrational surfaces. The islands on the same rational surface do not have the same size. When the ratio between the perturbing magnetic field B-r(r) and the toroidal magnetic field amplitude B(phi)0 is large enough, the magnetic island chains on different rational surfaces will overlap and chaotic orbits appear in the overlapping area, and the magnetic field becomes stochastic. It is remarkable that the stochastic layer appears first in the plasma edge region.
Resumo:
The dynamics of the plasma ions in the wake fields of short, ultraintense laser pulses in underdense plasmas are investigated analytically and numerically. Owing to the large ion-to-electron mass ratio, the motion of plasma ions in-such wake fields has often been assumed to be neglectable. It is shown that when the laser intensity exceeds 10(20) W/cm(2), the ion motion can no longer be ignored. In this case, ion momentum peaks appear behind the laser pulse, which correspond with the ion density peaks. The laser-excited wake field appears to be effective for ion acceleration, in particular to ions with high-charge numbers. The dependence of ion acceleration on the laser intensity, pulse width, and background plasma density is discussed. (c) 2006 Optical Society of America.