187 resultados para Current density
Resumo:
This paper studies the dependence of I - V characteristics on quantum well widths in AlAs/In0.53Ga0.47As and AlAs/In0.53Ga0.47As/InAs resonant tunnelling structures grown on InP substrates. It shows that the peak and the valley current density in the negative differential resistance region are closely related with quantum well width. The measured peak current density, valley current densities and peak-to-valley current ratio of resonant tunnelling diodes are continually decreasing with increasing well width.
Resumo:
The influence of a transverse magnetic field up to 13 T at 1.6 K on the current-voltage, I (V), characteristics of a doped GaAs/AlAs superlattice was investigated. Current hysteresis was observed in the domain formation regions of the I (V) at zero magnetic field while applied bias was swept in both up (0-6 V) and down (6-0 V) directions. The magnitude of current hysteresis was reduced and finally disappeared with increasing transverse magnetic field. The effect is explained as the modification of the current density versus electric field characteristic by transverse magnetic fields. Calculated results based on the tunnelling current formula in a superlattice support our interpretation.
Resumo:
This paper reports that lnAs/In0.53Ga0.47As/AlAs resonant tunnelling diodes have been grown on InP substrates by molecular beam epitaxy. Peak to valley current ratio of these devices is 17 at 300K. A peak current density of 3kA/cm(2) has been obtained for diodes with AlAs barriers of ten monolayers, and an In0.53Ga0.47As well of eight monolayers with four monolayers of InAs insert layer. The effects of growth interruption for smoothing potential barrier interfaces have been investigated by high resolution transmission electron microscope.
Resumo:
A specially designed quantum well laser for achieving extremely low vertical beam divergence was reported and theoretically investigated. The laser structure was characterized by two low index layers inserted between the waveguide layers and the cladding layers. The additional layers were intended to achieve wide optical spread in the cladding layers and strong confinement in the active region. This enabled significant reduction of beam divergence with no sacrifice in threshold current density. The numerical results showed that lasers with extremely low vertical beam divergence from 20 degrees down to 11 degrees and threshold current density of less than 131 A/cm(2) can be easily achieved by optimization of the structure parameters. Influences of individual key structure parameters on beam divergence and threshold current density are analyzed. Attention is also paid to the minimum cladding layer thicknesses needed to maintain low threshold current densities and low internal loss. The near and far field patterns are given and discussed. (C) 1998 American Institute of Physics.
Resumo:
The growth,fabrication,and characterization of 0.2μm gate-length AlGaN/GaN HEMTs,with a high mobility GaN thin layer as a channel,grown on (0001) sapphire substrates by MOCVD,are described.The unintentionally doped 2.5μm thick GaN epilayers grown with the same conditions as the GaN channel have a room temperature electron mobility of 741cm2/(V·s) at an electron concentration of 1.52×1016 cm-3.The resistivity of the thick GaN buffer layer is greater than 108Ω·cm at room temperature.The 50mm HEMT wafers grown on sapphire substrates show an average sheet resistance of 440.9Ω/□ with uniformity better than 96%.Devices of 0.2μm×40μm gate periphery exhibit a maximum extrinsic transconductance of 250mS/mm and a current gain cutoff frequency of77GHz.The AlGaN/GaN HEMTs with 0.8mm gate width display a total output power of 1.78W (2.23W/mm) and a linear gain of 13.3dB at 8GHz.The power devices also show a saturated current density as high as 1.07A/mm at a gate bias of 0.5V.
Resumo:
In a laser ion source, plasma drift distance is one of the most important design parameters. Ion current density and beam pulse width are defined by plasma drift distance between a laser target and beam extraction position. In direct plasma injection scheme, which uses a laser ion source and a radio frequency quadrupole linac, we can apply relatively higher electric field at beam extraction due to the unique shape of a positively biased electrode. However, when we aim at very high current acceleration such as several tens of milliamperes, we observed mismatched beam extraction conditions. We tested three different ion current at ion extraction region by changing plasma drift distance to study better extraction condition. In this experiment, C6+ beam was accelerated. We confirmed that matching condition can be improved by controlling plasma drift distance.
Resumo:
A modified subcell approach was adopted to evaluate the current density distributions of proton exchange membrane fuel cells (PEMFCs) with different electrodes. Conventional hydrophobic electrodes showed better performance under flooding conditions compared to hydrophilic electrodes. The thin-film hydrophilic electrode performed better in the absence of liquid water, but it was more readily flooded. A composite catalyst layer was designed with 2/3 of the area from the inlet prepared hydrophilic and the remaining 1/3 area hydrophobic. The composite catalyst layer with commercial scale dimension showed notable enhanced performance in the concentration polarization region. (C) 2004 The Electrochemical Society.
Resumo:
Using a refined two-dimensional hybrid-model with self-consistent microwave absorption, we have investigated the change of plasma parameters such as plasma density and ionization rate with the operating conditions. The dependence of the ion current density and ion energy and angle distribution function at the substrate surface vs. the radial position, pressure and microwave power were discussed. Results of our simulation can be compared qualitatively with many experimental measurements.
Resumo:
The voltage-current properties during plasma electrolytic discharge were determined by measuring the current density and cell voltage as functions of processing time and then by mathematical transformation. Correlation between discharge I-V property and the coatings microstructure on aluminum alloy during plasma electrolfic oxidation was determined by comparing the voltage-current properties at different process stages with SEM results of the corresponding coatings. The results show that the uniform passive film corresponds to a I-V property with one critical voltage, and a compound of porous layer and shred ceramic particles corresponds to a I-Vproperty with two critical voltages. The growth regularity of PEO cermet coatings was also studied.
Resumo:
定量分析电流密度在含裂纹载流薄板内的分布是当前利用电流热效应止裂技术中一个首先要解决的问题.由于裂纹的存在,电流密度在裂尖形成带奇异性分布的高度密集.现有的分析方法往往比较复杂或局限于特殊布置形式的裂纹.通过电流密度分布与弹性力学里反平面剪切问题的比拟,把分析含裂纹载流薄板内电流密度的分布等效于考虑相应的Ⅲ型裂纹问题,并比照Ⅲ型裂纹的应力强度因子来定义电流密度因子.而对于裂纹问题的处理可采用分布位错法这一断裂力学里便利有效的分析手段.由给出的算例可见,所提出的比拟解法可以方便精确地求解电流密度在裂尖附近的奇异分布,并有助于对这一奇异性在概念上的直观理解.
Resumo:
Amorphous [Al-Si-O] coatings were deposited on aluminum alloy by plasma electrolytic oxidation (PEO). The process parameters, composition, micrograph, and mechanical property of PEO amorphous coatings were investigated. It is found that the growth rate of PEO coatings reaches 4.44 mu m/min if the current density is 0.9 mA/mm(2). XRD results show that the PEO coatings are amorphous in the current density range of 0.3-0.9 mA/mm(2). EDS results show that the coatings are composed of O, Si and At elements. SEM results show that the coatings are porous. Nano indentation results show that the hardness of the coatings is about 3 - 4 times of that of the substrate, while the elastic modulus is about the same with the substrate. Furthermore, a formation mechanism of amorphous PEO coatings was proposed.
Resumo:
Barium-functionalized multiwalled carbon nanotube yarns were fabricated by drawing and twisting multiwalled carbon nanotube forests through a solution containing barium nitrate. After heat activation under vacuum, the functionalized yarns were enriched in barium oxide due to the high surface-to-volume ratio of the nanotubes. The cathodes exhibited good thermionic properties, with a work function as low as 1.73-2.06 eV and thermionic current density that exceeded 185 mA/cm(2) in a field of 850 V/5 mm at 1317 K. The barium-functionalized yarns had high tensile strength of up to 420 MPa and retained strength of similar to 250 MPa after a 2 h activation process. (C) 2008 American Institute of Physics.
Resumo:
The temperature and stress field in a thin plate with collinear cracks interrupting an electric current field are determined. This is accomplished by using a complex function method that allows a direct means of finding the distribution of the electric current, the temperature and stress field. Temperature dependency for the heat-transfer coefficient, coefficient of linear expansion and the elastic modulus are considered. As an example, temperature distribution is calculated for an alloy (No. GH2132) plate with two collinear cracks under high temperature. Relationships between the stress, temperature, electric density and crack length are obtained. Crack trajectories emanating from existing crack are predicted by application of the strain energy density criterion which can also be used for finding the load carrying capacity of the cracked plate. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
给出了具有裂纹的无限大导电薄板通入电流时,裂纹尖端电流密度因子的表达式,由电流密度与温度场的关系式进一步导出了电流密度因子与温度场的表达式.通过算例,描述了电流密度因子在裂尖附近的分布规律,为电磁热效应裂纹止裂方法的应用打下了理论基础.
Resumo:
GaInP/GaAs dual-junction solar cell with a conversion efficiency of 25.2% has been fabricated using metalorganic chemical vapor deposition (MOCVD) technique. Quantum efficiencies of the solar cell were measured within a temperature range from 25 to 160A degrees C. The results indicate that the quantum efficiencies of the subcells increase slightly with the increasing temperature. And red-shift phenomena of absorption limit for all subcells are observed by increasing the cell's work temperature, which are consistent with the viewpoint of energy gap narrowing effect. The short-circuit current density temperature coefficients dJ (sc)/dT of GaInP subcell and GaAs subcell are determined to be 8.9 and 7.4 mu A/cm(2)/A degrees C from the quantum efficiency data, respectively. And the open-circuit cell voltage temperature coefficients dV (oc)/dT calculated based on a theoretical equation are -2.4 mV/A degrees C and -2.1 mV/A degrees C for GaInP subcell and GaAs subcell.