78 resultados para Cultured lyric
Resumo:
From 2001 to 2002, a new and emergent infectious disease of Ophiocephalus argus occurred in a fishery in Hubei Province, China, with an incidence of 60% similar to 70% and a mortality as high as 100 %. The diseased fish showed an enlarged abdomen, the millet-like nodules in internal organs, and the swollen kidney which was composed of 5 similar to 10 sarcoma-like bodies in cream or gray-white colour or ulcerated into beandregs-like substance. Light microscopic observation revealed the basophilic or acidphilic inclusions in cytoplasm of the cells and the granulomas, a diffusive chronic inflammation in internal organs. Further analysis under an electron microscope indicated that the intracytoplasmic inclusions were rickettsia-like organisms (RLOs) that are either spherical or coccoid, with variable size, ranging from 0.5 similar to 1.5 mum in diameter, and enclosed within membrane-bound cytoplasmic vacuoles. RLO had a central nucleoid region with some fine filamentous structures and an electron-dense granule. Its cytoplasm contained abundant ribosomal bodies. Occasionally, RLO appeared to be divided by binary fission. RLOs were also observed in the homogenized tissue of infected fish. The results suggested that the death of cultured O. argus was caused by RLO infection.
Resumo:
UV-inactivated GCHV (grass carp hemorrhage virus) is able to induce an antiviral state in cultured CAB cells (crucian carp Carassius auratus blastulae embryonic cells) via the production of interferon (IFN). In the current work, the full-length cDNAs of two Mx genes, termed CaMx1 and CaMx2, have been cloned and sequenced from UV-inactivated GCHV-infected and still IFN-producing CAB cells by suppression subtractive hybridization. Their putative proteins show the characteristically structural features of mammalian IFN-induced Mx proteins, including GTP-binding motif, dynamin family signature and leucine zipper motif. CaMx1 exhibits 85% sequence identity to zebrafish MxA and 72-74% to three Atlantic salmon Mx proteins. CaMx2 is most similar to zebrafish MxE, with 80% identity, and then rainbow trout Mx3, with 52%. Constitutive expression was detected by RT-PCR for CaMx1, but not for CaMx2, in normal CAB cells, but their up-regulations could be induced after treatment with active GCHV, UV-inactivated GCHV and CAB IFN. Distinct kinetics of expression was observed for either CaMx1 or CaMx2 corresponding to the three stimuli, and even between CaMx1 and CaMx2, corresponding to the same stimulus. Upon virus infection, the transcriptional induction was strongly blocked for CaMx2 by cycloheximide (CHX), whereas almost nothing was observed for CaMx1. By contrast, following treatment with CAB IFN, CHX did not inhibit either gene transcription. Collectively, these results suggest that there are very distinct mechanisms for modulating the expression of both CaMx1 and CaMx2 in normal and GCHV-infected CAB cells.
Resumo:
The causative agent of lymphocystis disease that frequently occurs in cultured flounder Paralichthys olivaceus in China is lymphocystis virus (LV). In this study, 13 fish cell lines were tested for their susceptibility to LV. Of these, 2 cell lines derived from the freshwater grass carp Ctenopharyngodon idellus proved susceptible to the LV, and 1 cell line, GCO (grass carp ovary), was therefore used to replicate and propagate the virus. An obvious cytopathic effect (CPE) was first observed in cell monolayers at 1 d post-inoculation, and at 3 d this had extended to about 75% of the cell monolayer. However, no further CPE extension was observed after 4 d. Cytopathic characteristics induced by the LV were detected by Giemsa staining and fluorescence microscopic observation with Hoechst 33258 staining. The propagated virus particles were also observed by electron microscopy. Ultrastructure analysis revealed several distinct cellular changes, such as chromatin compaction and margination, vesicle formation, cell-surface convolution, nuclear fragmentation and the occurrence of characteristic 'blebs' and cell fusion. This study provides a detailed report of LV infection and propagation in a freshwater fish cell line, and presents direct electron microscopy evidence for propagation of the virus in infected cells. A possible process by which the CPEs are controlled is suggested.
Resumo:
Type I interferon (IFN) exerts its pleiotropic effects mainly through the JAK-STAT signaling pathway, which is presently best described in mammals. By subtractive suppression hybridization, two fish signaling factors, JAK1 and STAT1, had been identified in the IFN-induced crucian carp Carassius auratus L. blastulae embryonic (CAB) cells after treatment with UV-inactivated grass carp hemorrhagic virus (GCHV). Further, the full-length cDNA of STAT1, termed CaSTAT1, was obtained. It contains 2926 bp and encodes a protein of 718 aa. CaSTAT1 is most similar to rat STAT1 with 59% identity overall and displays all highly conserved domains that the STAT family possesses. Like human STAT1beta, it lacks the C-terminus acting as transcriptional activation domain in mammals. By contrast, only a single transcript was detected in virus-induced CAB cells. Expression analysis showed that CaSTAT1 could be activated by stimulation of CAB cells with poly I:C, active GCHV, UV-inactivated GCHV or CAB IFN, and displayed diverse expression patterns similar to that of mammalian STATI. Additionally, the expression of an antiviral gene CaMx1 was also induced under the same conditions, and expression difference between CaSTAT1 and CaMx1 was revealed by induction of CAB IFN. These results provide molecular evidence supporting the notion that the fish IFN signaling transduction pathway is similar to that in mammals. Fish IFN exerts its multiple functions, at least antiviral action, through a JAK-STAT pathway. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Chlorella pyrenoidosa was cultured with 350 and 700 p.p.m.v. CO2 at varied levels of light to see the impacts of doubled atmospheric CO2 concentration on its growth and photosynthesis. The CO2 enrichment did not affect the growth rate (mu), but significantly increased the cell density when light was sufficiently supplied. The CO2 enrichment significantly depressed light-saturated photosynthesis and dark respiration in the cells grown under a high-light regime, but not those under a low-light regime. The light-saturating point for photosynthesis and photosynthetic efficiency was not affected by the CO2 enrichment under either the high-light or low-light conditions.
Resumo:
UV-inactivated grass carp hemorrhage virus (GCHV) can induce high titer of interferon in cultured CAB (crucian carp (Carassius auratus L.) blastulae) cells, and thus defend host cells against the virus invasion. The mechanism is proposed that an antiviral state should be established in the host cells by activating expression of a set of antiviral-relevant genes. In this study, suppressive subtractive hybridization is applied to constructing a subtracted cDNA library with mRNAs isolated from UV-inactivated GCHV infected and mock-infected CAB cells. 272 differential cDNA fragments are identified by both PCR and dot blot from the subtractive cDNA library. Sequencing analysis reveals 69 genes, including 46 known gene homologues, and 23 unknown putative genes. The known genes include the genes involved in interferon signaling pathways, such as Stat1 and Jak1, the antiviral genes, such as Mx and Viperin, and a set of interferon-stimulated genes observed in mammalian cells. Most of the unknown putative genes contain AU-rich element in their sequences. Differential expressions of these genes are further confirmed by virtual Northern blot and RT-PCR. The data imply that UV-inactivated GCHV is not only able to induce production of interferon in the infected CAB cells, but also leads to the expression of a series of antiviral-relevant genes or immune-relevant genes, and therefore reveals that the signaling pathway of interferon system and antiviral mechanism in fish are similar to those in mammals.
Resumo:
Three virus isolates, RGV-9506, RGV-9807 and RGV-9808, were obtained from cultured pig frogs Rana grylio undergoing lethal infections. Previously, the first isolate, RGV-9506, was shown to be an iridovirus based on ultrastructural and morphological studies. In the present study, the original isolate, along with 2 recent ones, were more extensively characterized by experimental infection studies, histopathology, electron microscopy, serological reactivity, gel electrophoresis of viral polypeptides and DNA restriction fragments, PCR amplification, and nucleic acid sequence analysis of the major capsid protein (MCP) gene. The 3 isolates were shown to be identical to each other, and very similar to FV3, the type species of the genus Ranavirus (family Iridoviridae). These results suggest that RGV should be considered a strain of FV3, and indicate that FV3-like iridoviruses are capable of causing widespread, severe disease among cultured frogs.
Resumo:
A rhabdovirus was found to be associated with a lethal hemorrhagic disease in the cultured Chinese sucker Myxocyprinus asiaticus Bleeker. The rhabdovirus was amplified and isolated from the infected GCO, (grass carp ovary) cells. In ultrathin sections of liver cells from the diseased fish, the virus particles exhibited the characteristic bacilliform morphology, and budded through vesicle membranes of the infected cells. The isolated rhabdovirus particles were found to have a bacilliform morphology with 2 rounded ends rather than a typical flat base. The virus particles were measured and ranged in size from 150 to 200 nm in length and 50 to 60 nm in diameter. Most other characteristics, including their size, extensive virus infectivity to fish cell Lines, strong cytopathogenic effects, stability at high temperatures, vesicle formation in infected cells, structure protein electrophoretic patterns and the presence of an RNA genome, very closely resembled those of other fish rhabdoviruses. At present it is not known if this is a novel virus species or if it is an isolate of a known fish rhabdovirus. Until a confirmed identification can be made, we will temporarily refer to this virus as Chinese sucker rhabdovirus (CSRV).
Resumo:
Background: Subretinal microphotodiode array (MPDA) is a type of visual prosthesis used for the implantation in the subretinal space of patients with progressive photoreceptor cell loss. The present study aimed to evaluate the effect of materials for MPDA on the viability, apoptosis and barrier function of cultured pig retinal pigment epithelium (RPE) cells.Methods: Primary culture of pig RPE cells was performed and 24 pig eyes were used to start RPE culture. The third passage of the cultures was plated on different materials for MPDA and MPDAs. The tetrazolium dye-reduction assay (MTT) was used to determine RPE cell viability. Flow cytometry was measured to indicate the apoptosis rates of RPE cells on different materials. RPE cells were also cultured on microporous filters, and the transepithelial resistance and permeability of the experimental molecule were measured to determine the barrier function.Results: The data from all the methods indicated no significant difference between the materials groups and the control group, and the materials tested showed good biocompatibility.Conclusions: The materials for MPDA used in the present study had no direct toxicity to the RPE cells and did not release harmful soluble factors that affected the barrier function of RPE in vitro.
Resumo:
Triploid Penaeus (Fenneropenaeus) chinensis was successfully produced by heat shock. Their metamorphosis, the relationship between body weight and length and difference in appearance between triploids and their diploid siblings under laboratory culture were studied. Hematological studies showed a smaller number of haemocytes, but larger cell volume, in triploids than in diploids. Triploid shrimp did not show higher growth during the immature stage, but exhibited superior growth during the maturation stage. Characteristics of reproductive organs indicated that triploid shrimp may be sterile and sex ratio can be changed through triploidization of shrimp. This paper summarizes the progress made in triploid shrimp research which would be helpful in understanding more about triploids of crustaceans. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The relationship between Alexandrium tamarense (Lebour) Balech, one of red-tide alga, and two strains of marine bacteria, Bacillius megaterium(S-7) and B. halmapulus(S-10) isolated from Xiamen Western Sea, was investigated by evaluating the growth state of A. tamarense and the variation of P-glucosidase activity in co-culture system. The results showed the growth and multiplication of the alga were related with the concentration, genus speciality of the bacteria, and growth stage of the alga itself. The growth of A. tamarense was obviously inhibited by S7 and S, at high concentration. Either inhibition or promotion contributed much more clearly in earlier than in later stage of the growth of the alga. Furthermore, there was a roughly similar variation trend of the activity of extra-cellular enzyme, beta-glucosidase, in the water of the separately co-cultured bacteria S-7 and S-10 with the alga. The beta-glucosidase activity (beta-GlcA) rapidly increased during the later algal growth accompanying the increase of the lysis of the alga cells. The obvious inhibition of A. tamarense by marine bacteria at high concentration and evident increase of beta-GlcA in co-colture system would help us in better understanding the relationship between red-tide alga and bacteria, and also enlightened us the possible use of bacteria in the bio-control of red-tide.
Resumo:
Mass mortalities of cultured zhikong scallops (Chlamys farreri) have occurred each summer in most culture areas of northern China since 1996. Among the hypothesized causes are high culture density, infectious disease and genetic inbreeding. To investigate these potential agents, C. farreri were deployed at three densities (low, medium and high) at three sites (Jiaonan, Penglai and Yantai) in the summer of 2000. Scallops were sampled for survival, growth and histopathology before, during and after a mortality episode. Most of the mortality occurred in July and August, during and toward the later part of the spawning season, when water temperature reached 23-26 degrees C. Final cumulative mortalities reached 85% to 90% at all three sites. Scallops in the medium and high densities had higher initial death rates than did those at the low density. High densities also inhibited growth. Ciliates from the genus Trichodina, larvae of various organisms and anomalous secretions were observed in sections of the gill cavity, with highest prevalence during and at the end of the mortality period. Prokaryotic inclusion bodies were found in the soft tissues, but their prevalence was low and apparently without correlation with mortalities. Genetic analysis with random amplified polymorphic DNA markers showed slightly lower heterozygosity in the cultured stocks (0.301) than in the wild stocks (0.331). It is possible that the mortalities are caused by a combination of several factors such as stress associated with reproduction, high temperature, overcrowding and poor circulation in the growout cages, opportunistic invaders or pathogens, and possibly inbreeding. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Since 1988 growers of bay scallop Argopecten irradians in China have been experiencing mortality in their cultured stocks. Although poorly documented, mortality apparently began near Qingdao and has since spread to other areas of Shandong and Liaoning provinces. Samples of cultured scallops were collected from several growing areas in these provinces and analyzed by histological methods for pathogens. An unidentified haplosporidian parasite was observed in a high proportion of scallops from two of the stocks examined. Most infections were of low intensity, but one heavy infection was also observed. Only plasmodia stages were observed; they occurred intercellularly in connective tissues throughout the scallops. Plasmodia were spherical to oval, varied from 4.0 to 17.0 mu m in diameter and contained from 2 to 18 nuclei. Absence of spores prevented generic assignment of the parasite. The source and pathogenicity of the haplosporidian could not be assessed without additional research. No other microbial parasites (i.e. rickettsia-like, chlamydia-like or kidney coccidia) were observed in any of the scallops examined.
Resumo:
Carbon, nitrogen, phosphorus, silicon composition of cultured two different sized phytoplankton common species of Thalassiosira rotula and Skeletonema costatum from the Jiaozhou Bay were measured. Carbon, nitrogen, phosphorus, silicon contents in cell were. obvious higher in T. rotula than in S. costatum, but the percents of nitrogen, phosphorus, silicon contents in cell dry mass in T. rotula were lower than those in S. costatum. The dry mass concentrations of nitrogen,phosphorus,silicon in S. costatum were much higher than those in T. rotula, particularly silicon, the former was 6.4 times of the latter, showing that S. costatum could more assimilate these elements. Especially, S. costatum had competitive dominance for assimilating silicon, which is beneficial to its becoming a major dominant species in relative short silicon of the Jiaozhou Bay. There were some differences in numerical value of nutrient ratios both laboratory-cultured phytoplankton and different sized suspended particulates (mainly phytoplankton) in the Jiaozhou Bay, which was caused by the changes of environment. High contents of carbon, nitrogon and relative low phosporus,silicon, high molar ratio of nitrogen to phosphorus (far higher than Redfield value) and low ratio of silicon to phosphorus and silicon to nitrogen (far lower than Redfield values) in the two diatoms and different sized suspended particulates were consistent with those in the seawater. Relative short silicon in the seawater and phytoplankton showed that silicon was possibly affectting phytoplankton growth in the Jiaozhou Bay.
Resumo:
Pond farming for sea cucumber has developed rapidly along the northern coast of China in the recent years. Holothurians inhabiting ponds undergo seasonal fluctuations of salinity. This study deals with the bioenergetic responses of pond-cultured sea cucumbers Apostichopus japonicus (wet weight of 37.5 +/- 1.8 g) to different water salinities [22, 27, 31.5, and 36 practical salinity units (psu)] at 15 degrees C in the laboratory to determine the influence of water salinity on growth and energy allocation in this species. Results show that ingested energy and scope for growth (SFG) were highest at 31.5 psu and then decreased when water salinity was below or above this point. Although energy ingested was lowest at 36 psu, the lowest SFG occurred at 22 psu (only 102.68 +/- 14.26 J g(-1) d(-1)) because animals reared at 22 psu spent much more consumed energy on feces (72.19%), respiration (21.70%), and excretion (2.59%), leaving less energy for growth (3.52%). Results suggest that pond-cultured sea cucumbers could tolerate chronic salinity fluctuations at a range of 22 to 36 psu and grew better between 27 and 31.5 psu, but decreased at salinities above and below the mentioned salinity range. Crown Copyright (C) 2010 Published by Elsevier B.V. All rights reserved.