117 resultados para Chloride transport
Resumo:
We have theoretically investigated ballistic electron transport through a combination of magnetic-electric barrier based on a vertical ferromagnet/two-dimensional electron gas/ferromagnet sandwich structure, which can be experimentally realized by depositing asymmetric metallic magnetic stripes both on top and bottom of modulation-doped semiconductor heterostructures. Our numerical results have confirmed the existence of finite spin polarization even though only antisymmetric stray field B-z is considered. By switching the relative magnetization of ferromagnetic layers, the device in discussion shows evident magnetoconductance. In particular, both spin polarization and magnetoconductance can be efficiently enhanced by proper electrostatic barrier up to the optimal value relying on the specific magnetic-electric modulation. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3041477]
Resumo:
In this paper the photorefractive sensitivity defined for single-centre holographic recording is modified to adapt two-centre holographic recording. Based on the time analytic solution of Kukhtarev equations for doubly doped crystals, the analytical expression of photorefractive sensitivity is given. For comparison with single-centre holographic recording and summing the electron competition effects between the deeper and shallower traps, an effective electron transport length is proposed, which varies with the intensity ratios of recording light to sensitive light. According to analyses in this paper, the lower photorefractive sensitivity in two-centre holographic recording is mainly due to the lower concentration of unionized dopants in the shallower centre and the lower effective electron transport length.
Resumo:
Yb3+Er3+-codoped chloride-modified germanate-bismuth-lead glasses have been synthesized by the conventional melting and quenching method. Structural and thermal stability properties have been obtained on the basis of the Raman spectra and differential thermal analysis, which indicate that the PbCl2 addition has an important influence on the phonon density of states, maximum phonon energy, and thermal stability of host glasses. The Judd-Ofelt intensity parameters and quantum efficiencies were calculated on the basis of the Judd-Ofelt theory and lifetime measurements. For the 1.53 mu m emission band, the full widths at the half-maximum increase and peak wavelengths are blueshifted with increasing PbCl2 content. Moreover, the effect of the PbCl2 addition on the phonon density of states, OH- content, and upconversion luminescence has been discussed and evaluated. Our results reveal that, with increasing PbCl2 content, the decrease of phonon density and OH- content contributes more to the enhanced upconversion emissions than that of maximum phonon energy. (c) 2005 Optical Society of America
Resumo:
Tm3+-doped oxide-chloride germanate and tellurite glasses have been synthesized by conventional melting method. Intense up-conversion luminescence emissions were simultaneously observed at room temperature in these glasses. The possible up-conversion mechanisms are discussed and estimated. However, in these Tm3+-doped glasses, tellurite glass showed weaker up-conversion emissions than germanate glass, which is inconsistent with the prediction from the difference of maximum phonon energy between tellurite and germanate glasses. In this paper, Raman spectroscopy was employed to investigate the origin of the difference in up-conversion luminescence in the two glasses. Our results confirm that, besides the maximum phonon energy, the phonon density of host glasses is also an important factor in determining the up-conversion efficiency. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Effect of the substitutions of chloride for fluoride on the chemical and physical properties and the crystallization behavior in heavy metal fluoride glasses has been investigated. The characteristic temperature of the glass does not changed obviously when the fluoride was taken place by chloride. Compared with samples of being free of ErF3, the doping samples are more inclined to be surface crystallization. Optical basicity in the glass system increases with increasing the negative charge provided by the chloride atoms and the absorption peak red shifted is observed in absorption spectra. XRD measurements show that not a single crystalline phase appears in the heated glass samples, which indicate the substitutions of chloride for fluoride with a variety of crystalline precipitation trends. (c) 2007 Elsevier B.V All rights reserved.
Resumo:
gamma-LiAlO2 layers with a highly preferred (1 0 0) orientation were prepared by vapor transport equilibration (VTE) technique on (0 0 0 1) sapphire substrate. Microststructure of the gamma-LiAlO2 layers was studied by XRD and SEM. In the temperature range from 750 to 1100 degrees C, the residual stress in the gamma-LiAlO2 layers varied from tensile to compressive with the increase of VTE temperature, and the critical point of the change between tensile and compressive stress is around 975 degrees C. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Large-sized (similar to 2 inch, 50.8 mm) gamma-UA102 single crystal has been grown by conventional Czochralski (Cz) method, but the crystal ha's a milky, dendriform center. The samples taken from transparent and milky parts were ground and examined by X-ray diffraction. All diffraction peaks could be indexed in gamma-LiAlO2. The crystal quality was characterized by X-ray rocking curve. The full-width at half-maximum (FWHM) values are 116.9 and 132.0 arcsec for transparent and milky parts, respectively. The vapor transport equilibrium (VTE) technique was introduced to modify the crystal quality. After 1000 degrees C/48 h, 1100 degrees C/48 h, 1200 degrees C/48 h VTE processes, the FWHM values dropped to 44.2 and 55.2 arcsec for transparent and milky part, respectively. The optical transmission of transparent part was greatly enhanced from 85% to 90%, and transmission of milky part from 75% to 80% in the range of 190 similar to 1900 nm at room temperature. When the VTE temperature was raised to 1300 degrees C, the sample cracked and FWHM values of transparent and milky parts were increased to 55.2 and 80.9 arcsec, respectively. By combining Cz technique with VTE technique, large-sized and high quality gamma-LiAlO2 crystal can be obtained.
Resumo:
About Phi 45 mm LiAlO2 single crystal was grown by Czochralski (Cz) technique. However, the full-width at half-maximum (FWHM) value was high to 116.9 arcsec. After three vapor transport equilibration (VTE) processes, we can obtain high-quality LiAlO2 slice with the FWHM value of 44.2 arcsec. ZnO films were fabricated on as-grown slices and after-VTE ones by pulsed laser deposition (PLD). It was found that ZnO films on the two slices have similar crystallinity, optical transmittance and optical band gap at room temperature. These results not only show that LAO substrate is suitable for ZnO growth, but also prove that the crystal quality of LAO substrate slightly affects the structural and optical properties of ZnO film.
Resumo:
Highly (001) orientation LiGaO2 layers have been successfully fabricated on (100) beta-Ga2O3 surface by vapor transport equilibration (VTE) technique. The temperature is very important for the WE treatment. At low temperature (800 degrees C), LiGaO(2)layers are textured. As the temperature was raised to 1100 C the layer becomes highly oriented in the [100] direction. It shows that the best temperature for WE treatment is 1100 degrees C. This technique is promising to fabricate small lattice mismatch composite substrate of LiGaO2 (001)//beta-Ga2O3 (100) for GaN films. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
gamma-LiAlO2 (LAO) single crystal has been grown by the Czochralski method. However, its quality was deteriorated due to lithium volatilization during the crystal growth. The full width at half maximum value drops from 116.9 to 44.2 arc sec after the LAO slice was treated by vapor transport equilibration at 1000, 1100, and 1200 degrees C/48 h in sequence. The treated slice shows higher optical transmission than the as-grown one in the measured wavelength range of 190-1900 nm, meanwhile, its absorption edge exhibits a blueshift. According to Raman spectra, the treated slice has homogeneous quality at different depths from surface to 0.01 mm. The expansion coefficient of the treated slice for a axis drops from 17.2398x10(-6)/degrees C to 16.5240x10(-6)/degrees C, and that for c axis drops from 10.7664x10(-6)/degrees C to 10.0786x10(-6)/degrees C.
Resumo:
Crystalline beta-BBO layers have been successfully prepared on (0 0 1)-oriented Sr2+-doped alpha-BBO substrates using vapor transport equilibration technique. The layers were characterized by X-ray diffraction, X-ray rocking curve and transmission spectra. The present results manifest that the VTE treatment time and powder ratio are important factors on the preparation of beta-BBO layers. beta-BBO layers with a highly (0 0 l) preferred orientation were obtained according to XRD profiles. The full width at half-maximum of the rocking curve for the layer is as low as about 1000 in., which shows the high crystallinity of the layer. These results reveal the possibility of fabricating beta-BBO (0 0 1) layers on (0 0 1)-oriented Sr2+-doped alpha-BBO substrates by VTE. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
On the basis of the Boltzmann equation, the authors propose a model that includes scattering from both film surfaces and grain boundaries, and have studied the quasiclassical electrical transport in metallic films. The in-plane electric conductivity of metallic films is obtained, and the theoretical results are shown to be in good agreement with experimental data. We also give the relation between temperature coefficient of resistivity and thickness of metallic films and make a comparison with experiment. <(C)> 2004 American Institute of Physics.