20 resultados para Charles II, King of England, 1630-1685.
Resumo:
The large-size domain and continuous para-sexiphenyl (p-6P) ultrathin film was fabricated successfully on silicon dioxide (SiO2) substrate and investigated by atomic force microscopy and selected area electron diffraction. At the optimal substrate temperature of 180 degrees C, the first-layer film exhibits the mode of layer growth, and the domain size approaches 100 mu m(2). Its saturated island density (0.018 mu m(-2)) is much smaller than that of the second-layer film (0.088 mu m(-2)), which begins to show the Volmer-Weber growth mode.
Resumo:
An enhanced electrochemiluminescence (ECL) efficiency is obtained from the ruthenium complex tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)(3)(2+)) by introduction of an ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate (BMImBF(4)). Upon addition of 1% (v/v) BMImBF(4) to 0.1 mm Ru(bpy)(3)(2+) solution, a maximum increase in ECL intensity is obtained both at an indium tin oxide (ITO) electrode (15-fold) and at a glassy carbon (GC) electrode (5- to 64old). Furthermore, upon addition of 1% (v/v) BMImBF4 to 5 pm Ru(bpy)(3)(2+)/100 mm co-reactant systems at a GC electrode, IL adsorption occurs at the electrode surface, which results in a change of the polarity of the electrode surface. Such functionalization greatly improves the functions of both Ru(bpy)(3)(2+) and ionic liquids, as is demonstrated in the sensitive and selective concentration enrichment of the Ru(bpy)(3)(2+) co-reactants.
Resumo:
Hydrotalcite-like compounds (HTLcs): CoMAlCO3-HTLcs (M=Cu2+, Ni2+, Mn2+, Cr3+, Fe3+), were synthesized by coprecipitation and characterized with XRD and IR. The catalysis of these HTLcs and their calcined products were studied in the p-cresol oxidation, and the effects of the temperature of HTLcs calcination, the ratio of Co/Cu, different promoters, reaction temperatures and reaction times on reaction activities were investigated. It has been found that calcined HTLcs have higher activity than uncalcined samples and mechanical mixed oxides in this reaction. The best yield was obtained from the CoCuAlCO3-HTLc (Co/Cu/Al=3:1:1) calcined at 450 degrees C. A tentative reaction mechanism was also proposed. (C) 1998 Elsevier Science B.V.