35 resultados para COMPUTATIONAL NEURAL-NETWORKS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper gives a condition for the global stability of a continuous-time hopfield neural network when its activation function maybe not monotonically increasing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel approach is proposed for the simultaneous optimization of mobile phase pH and gradient steepness in RP-HPLC using artificial neural networks. By presetting the initial and final concentration of the organic solvent, a limited number of experiments with different gradient time and pH value of mobile phase are arranged in the two-dimensional space of mobile phase parameters. The retention behavior of each solute is modeled using an individual artificial neural network. An "early stopping" strategy is adopted to ensure the predicting capability of neural networks. The trained neural networks can be used to predict the retention time of solutes under arbitrary mobile phase conditions in the optimization region. Finally, the optimal separation conditions can be found according to a global resolution function. The effectiveness of this method is validated by optimization of separation conditions for amino acids derivatised by a new fluorescent reagent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel method for the optimization of pH value and composition of mobile phase in HPLC using artificial neural networks and uniform design is proposed. As the first step. seven initial experiments were arranged and run according to uniform design. Then the retention behavior of the solutes is modeled using back-propagation neural networks. A trial method is used to ensure the predicting capability of neural networks. Finally, the optimal separation conditions can be found according to a global resolution function. The effectiveness of this method is validated by optimization of separation conditions for both basic and acidic samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A slab optical waveguide (SOWG) has been used for study of adsorption of both methylene blue (MB) and new methylene blue (NMB) in liquid-solid interface. Adsorption characteristics of MB and NMB on both bare SOWG and silanized SOWG by octadecyltrichlorosilane (ODS) were compared. The simultaneous determinations of both MB and NMB were explored by flow injection SOWG spectrophotometric analysis and artificial neural networks (ANNs) for the first time. Concentrations of MB and NMB were estimated simultaneously with the ANNs. Results obtained with SOWG were compared with those got by conventional UV-visible spectrophotometry. (C) 2003 Elsevier Science B.V All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The new topological indices A(x1)-A(x3) suggested in our laboratories were applied to the study of structure-property relationships between color reagents and their color reactions with yttrium. The topological indices of twenty asymmetrical phosphone bisazo derivatives of chromotropic acid were calculated. The work shows that QSPR can be used as a novel aid to predict the molar absorptivities of color reactions and in the long term to be helpful tool in-color reagent design. Multiple regression analysis and neural network were employed simultaneously in this study. The results demonstrated the feasibility and the effectiveness of the method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The investigations of classification on the valence changes from RE3+ to RE2+ (RE = Eu, Sm, Yb, Tm) in host compounds of alkaline earth berate were performed using artificial neural networks (ANNs). For comparison, the common methods of pattern recognition, such as SIMCA, KNN, Fisher discriminant analysis and stepwise discriminant analysis were adopted. A learning set consisting of 24 host compounds and a test set consisting of 12 host compounds were characterized by eight crystal structure parameters. These parameters were reduced from 8 to 4 by leaps and bounds algorithm. The recognition rates from 87.5 to 95.8% and prediction capabilities from 75.0 to 91.7% were obtained. The results provided by ANN method were better than that achieved by the other four methods. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The activities/properties of two molecules with identical formula but different configuration states of the asymmetric atoms are different. Thus, usually the common topological indices are not suitable. In this study, the chiral topological indices were obtained by extending A(mi) indices suggested by our laboratory and molecular connectivity indices. The modified topologial indices have been used for the studies on D2 for dopamine receptor and a receptor activities of fourteen N-alkylated 3-(3-hydroxypyenyl)-piperidines. It has been observed that selected variables possess low correlations. The results obtained by using multiple regression analysis and artificial neural networks are satisfactory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For a QSAR of the toxicity of aminobenzenes in environment and their structures, the projection areas of the molecules in 3D space were calculated. The combinations of the projection areas and quantum chemical as well as topological parameters were performed for the methods of regression analysis and neural network, and much better results than that by using CoMFA were achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To simplify the abstraction of descriptors, for the correlation analysis of the stability constants of gadolinium(III) complexes and their ligand structures, aiming at gadolinium(III) complexes, we only considered the ligands and ignored the common parts of the structures, i.e., the metal ions. Quantum-chemical descriptors and topological indices were calculated to describe the structures of the ligands. Multiple regression analysis and neural networks were applied to construct the models between the ligands and the stability constants of gadolinium(III) complexes and satisfactory results were obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this research. we found CoMFA alone could not obtain sufficiently a strong equation to allow confident prediction for aminobenzenes. When some other parameter. such as heat of molecular formation of the compounds, was introduced into the CoMFA model, the results Were improved greatly. It gives us a hint that a better description for molecular structures will yield a better prediction model, and this hint challenged us to look for another method-the projection areas of molecules in 3D space for 3D-QSAR. It is surprising that much better results than that obtained by using CoMFA Were achieved. Besides the CoMFA analysis. multiregression analysis and neural network methods for building the models were used in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Digitization is the main feature of modern Information Science. Conjoining the digits and the coordinates, the relation between Information Science and high-dimensional space is consanguineous, and the information issues are transformed to the geometry problems in some high-dimensional spaces. From this basic idea, we propose Computational Information Geometry (CIG) to make information analysis and processing. Two kinds of applications of CIG are given, which are blurred image restoration and pattern recognition. Experimental results are satisfying. And in this paper, how to combine with groups of simple operators in some 2D planes to implement the geometrical computations in high-dimensional space is also introduced. Lots of the algorithms have been realized using software.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we introduce a weighted complex networks model to investigate and recognize structures of patterns. The regular treating in pattern recognition models is to describe each pattern as a high-dimensional vector which however is insufficient to express the structural information. Thus, a number of methods are developed to extract the structural information, such as different feature extraction algorithms used in pre-processing steps, or the local receptive fields in convolutional networks. In our model, each pattern is attributed to a weighted complex network, whose topology represents the structure of that pattern. Based upon the training samples, we get several prototypal complex networks which could stand for the general structural characteristics of patterns in different categories. We use these prototypal networks to recognize the unknown patterns. It is an attempt to use complex networks in pattern recognition, and our result shows the potential for real-world pattern recognition. A spatial parameter is introduced to get the optimal recognition accuracy, and it remains constant insensitive to the amount of training samples. We have discussed the interesting properties of the prototypal networks. An approximate linear relation is found between the strength and color of vertexes, in which we could compare the structural difference between each category. We have visualized these prototypal networks to show that their topology indeed represents the common characteristics of patterns. We have also shown that the asymmetric strength distribution in these prototypal networks brings high robustness for recognition. Our study may cast a light on understanding the mechanism of the biologic neuronal systems in object recognition as well.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents an two weighted neural network approach to determine the delay time for a heating, ventilating and air-conditioning (HVAC) plan to respond to control actions. The two weighted neural network is a fully connected four-layer network. An acceleration technique was used to improve the General Delta Rule for the learning process. Experimental data for heating and cooling modes were used with both the two weighted neural network and a traditional mathematical method to determine the delay time. The results show that two weighted neural networks can be used effectively determining the delay time for AVAC systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dynamic Power Management (DPM) is a technique to reduce power consumption of electronic system by selectively shutting down idle components. In this article we try to introduce back propagation network and radial basis network into the research of the system-level power management policies. We proposed two PM policies-Back propagation Power Management (BPPM) and Radial Basis Function Power Management (RBFPM) which are based on Artificial Neural Networks (ANN). Our experiments show that the two power management policies greatly lowered the system-level power consumption and have higher performance than traditional Power Management(PM) techniques-BPPM is 1.09-competitive and RBFPM is 1.08-competitive vs. 1.79, 1.45, 1.18-competitive separately for traditional timeout PM, adaptive predictive PM and stochastic PM.