18 resultados para Bone QCT


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate the roles of intercellular gap junctions and extracellular ATP diffusion in bone cell calcium signaling propagation in bone tissue, in vitro bone cell networks were constructed by using microcontact printing and self-assembled monolayer technologies. In the network, neighboring cells were interconnected through functional gap junctions. A single cell at the center of the network was mechanically stimulated by using an AFM nanoindenter. Intracellular calcium ([Ca2+](i)) responses of the bone cell network were recorded and analyzed. In the untreated groups, calcium propagation from the stimulated cell to neighboring cells was observed in 40% of the tests. No significant difference was observed in this percentage when the intercellular gap junctions were blocked. This number, however, decreased to 10% in the extracellular ATP-pathway-blocked group. When both the gap junction and ATP pathways were blocked, intercellular calcium waves were abolished. When the intracellular calcium store in ER was depleted, the indented cell can generate calcium transients, but no [Ca2+](i) signal can be propagated to the neighboring cells. No [Ca2+](i) response was detected in the cell network when the extracellular calcium source was removed. These findings identified the biochemical pathways involved in the calcium signaling propagation in bone cell networks. Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, the mechanism of intercellular calcium wave propagation in bone cell networks was identified. By using micro-contact printing and self-assembled monolayer technologies, two types of in vitro bone cell networks were constructed: open-ended linear chains and looped hexagonal networks with precisely controlled intercellular distances. Intracellular calcium responses of the cells were recorded and analysed when a single cell in the network was mechanically stimulated by nano-indentation. The looped cell network was shown to be more efficient than the linear pattern in transferring calcium signals from cell to cell. This phenomenon was further examined by pathway-inhibition studies. Intercellular calcium wave propagation was significantly impeded when extracellular adenosine triphosphate (ATP) in the medium was hydrolysed. Chemical uncoupling of gap junctions, however, did not significantly decrease the transferred distance of the calcium wave in the cell networks. Thus, it is extracellular ATP diffusion, rather than molecular transport through gap junctions, that dominantly mediates the transmission of mechanically elicited intercellular calcium waves in bone cells. The inhibition studies also demonstrated that the mechanical stimulation-induced calcium responses required extracellular calcium influx, whereas the ATP-elicited calcium wave relied on calcium release from the calcium store of the endoplasmic reticulum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanohydroxyapatite (op-HA) surface-modified with L-lactic acid oligomer (LAc oligomer) was prepared by LAc oligomer grafted onto the hydroxyapatite (HA) surface. The nanocomposite of op-HA/PLGA with different op-HA contents of 5, 10, 20 and 40 wt.% in the composite was fabricated into three-dimensional scaffolds by the melt-molding and particulate leaching methods. PLGA and the nanocomposite of HA/PLGA with 10 wt.% of ungrafted hydroxyapatite were used as the controls. The scaffolds were highly porous with evenly distributed and interconnected pore structures, and the porosity was around 90%. Besides the macropores of 100-300 mu m created by the leaching of NaCl particles, the micropores (1-50 mu m) in the pore walls increased with increasing content of op-HA in the composites of op-HA/PLGA. The op-HA particles could disperse more uniformly than those of pure HA in PLGA matrix. The 20 wt.% op-HA/PLGA sample exhibited the maximum mechanical strength, including bending strength (4.14 MPa) and compressive strength (2.31 MPa). The cell viability and the areas of the attached osteoblasts on the films of 10 wt.% op-HA/PLGA and 20 wt.% op-HA/PLGA were evidently higher than those on the other composites.