72 resultados para Architecture and energy conservation.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We studied seasonal variation in the activity budget of a habituated group of Nomascus concolor jingdongensis at Mt. Wuliang, Central Yunnan, China from March 2005 to April 2006 via scan sampling at 5-min intervals. The study site is near the northern extreme of the distribution of hylobatids, at high altitude with extreme seasonality of temperature and rainfall. During the day, feeding manifested a bimodal pattern of high activity levels in mid-morning and mid-afternoon, whereas resting reached a peak at midday, with proportionally less time used for traveling. Annually, the group spent an average of 40.0% of the time resting, 35.1% feeding, 19.9% traveling, 2.6% singing, 1.2% playing, and 1.3% in other activities. The proportion of time allocated to activities showed significant monthly variations and was influenced by the diet and temperature. Gibbons increased traveling and playing time and decreased feeding time when they ate more fruit, and they decreased traveling, singing, and playing time and increased feeding time when they ate more leaves. Moreover, when the temperature was low, the gibbons decreased time traveling and increased time resting. In summary, black-crested gibbons employed high-effort activities when they ate more fruit and energy-conservation patterns when they ate more leaves and in low temperature. Behavioral data from the site are particularly useful in understanding gibbon behavioral adaptations to different sets of ecological conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Parallel strand models for base sequences d(A)(10). d(T)(10), d(AT)(5) . d(TA)(5), d(G(5)C(5)). d(C(5)G(5)), d(GC)(5) . d(CG)(5) and d(CTATAGGGAT). d(GATATCCCTA), where reverse Watson-Crick A-T pairing with two H-bonds and reverse Watson-Crick G-C pairing with one H-bond or with two H-bonds were adopted, and three models of d(T)(14). d(A)(14). d(T)(14) triple helix with different strand orientations were built up by molecular architecture and energy minimization. Comparisons of parallel duplex models with their corresponding B-DNA models and comparisons among the three triple helices showed: (i) conformational energies of parallel AT duplex models were a little lower, while for GC duplex models they were about 8% higher than that of their corresponding B-DNA models; (ii) the energy differences between parallel and B-type duplex models and among the three triple helices arose mainly from base stacking energies, especially for GC base pairing; (iii) the parallel duplexes with one H-bond G-C pairs were less stable than those with two H-bonds G-C pairs. The present paper includes a brief discussion about the effect of base stacking and base sequences on DNA conformations. (C) 1997 Academic Press Limited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elevational and latitudinal patterns of species richness for birds and mammals were compared with human population density in relation to nature reserve designation in two areas of Yunnan Province, China. Results suggest that species richness is not the same for the two areas. In Gaoligongshan Region, species richness is inversely correlated with elevation and altitude, while reserve designation is positively correlated with elevation and latitude. In Jingdong County, reserve designations are positively correlated with elevation, but species richness shows no clear trends. In general, the present situation is strongly influenced by human activities. It appears that reserve designation is mismatched with species richness in Gaoligongshan Region, while there is a better fit between the two in Jingdong County. In both areas, however, it appeared that reserves were located primarily in order to reduce conflict with humans rather than to maximize conservation of biodiversity, probably because humans were responsible for forest-especially primary forest-destruction and degradation in the low-lying areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth and energy budget for F-2 'all-fish' growth hormone gene transgenic common carp Cyprinus carpio of two body sizes were investigated at 29.2 degrees C for 21 days. Specific growth rate, feed intake, feed efficiency, digestibility coefficients of dry matter and protein, gross energy intake (I-E), and the proportion of I-E utilized for heat production (H-E) were significantly higher in the transgenics than in the controls. The proportion of I-E directed to waste products [faecal energy (F-E) and excretory energy loss (Z(E) + U-E) where Z(E) is through the gills and U-E through the kidney], and the proportion of metabolizable energy (M-E) for recovered energy (R-E) were significantly lower in the transgenics than in the controls. The average energy budget equation of transgenic fish was as follows: 100 I-E = 19.3 F-E + 6.0 (Z(E) + U-E) + 45.2 H-E + 29.5 R-E or 100 M-E = 60.5 H-E + 39.5 R-E. The average energy budget equation of the controls was: 100 I-E = 25.2 F-E + 7.4 (Z(E) + U-E) + 35.5 H-E + 31.9 R-E or 100 M-E = 52.7 H-E + 47.3 R-E. These findings indicate that the high growth rate of 'all-fish' transgenic common carp relative to their non-transgenic counterparts was due to their increased feed intake, reduced lose of waste productions and improved feed efficiency. The benefit of the increased energy intake by transgenic fish, however, was diminished by their increased metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we investigated the effects of animal-plant protein ratio in extruded and expanded diets on nutrient digestibility, nitrogen and energy budgets of juvenile soft-shelled turtle (Pelodiscus sinensis). Four extruded and expanded feeds (diets 1-4) were formulated with different animal-plant protein ratios (diet 1, 1.50:1; diet 2, 2.95:1; diet 3, 4.92:1; diet 4, 7.29:1). The apparent digestibility coefficients (ADCs) of dry matter and crude lipid for diet 1 were significantly lower than those for diets 2-4. There was no significant difference in crude protein digestibility among diets 1-4. The ADC of carbohydrate was significantly increased with the increase in animal-plant protein. Although nitrogen intake rate, faecal nitrogen loss rate and excretory nitrogen loss rate of turtles fed diet 1 were significantly higher than those fed diets 2-4, nitrogen retention rate, net protein utilization and biological value of protein in these turtles were significantly lower than those fed diets 2-4. In addition, energy intake rate, excretory energy loss rate and heat production rate of turtles fed diet 1 were also significantly higher than those fed diets 2-4. Faecal energy loss was significantly reduced with the increase in the animal-plant protein ratio. The ADC of energy and assimilation efficiency of energy significantly increased with a higher animal-plant protein ratio. The growth efficiency of energy in the group fed diet 1 was significantly lower than those in the groups fed diets 2-4. Together, our results suggest that the optimum animal-plant protein ratio in extruded and expanded diets is around 3:1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of ration on growth and energy budget of Chinese longsnout catfish was investigated in a growth trial. Fish of initial body weight of 6.5 g were fed at six ration levels (RLs): starvation, 0.8%, 1.6%, 2.4%, 3.2% of body weight per day, and apparent satiation for 8 weeks. Fish were weighed biweekly to adjust feed amount. The results showed that specific growth rate in wet weight, protein and energy increased logarithmically with increased RLs. The relationship of specific growth rate in wet weight (SGRw, % day(-1)) and RL (%) was a decelerating curve: SGRw=-0.62+3.10 Ln(RL+1). The energy budget equation at satiation was: 100 IE=12.94 FE+5.50(ZE+UE)+40.07 HE+41.49 RE, where IE, FE, (ZE+UE), HE, RE are food energy, faecal energy, excretory energy, heat production and recovered energy respectively. Body composition was slightly but significantly affected by ration size except for protein content. The most efficient ration based on the relationship between RL and feed efficiency ratio in energy (FERe) was 1.8% of body weight per day.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A growth trial was conducted at 30 degrees C to investigate the effect of body size on growth and energy budget of Nile tilapia. The average initial body weights of the four size groups tested were 9.3, 34.1, 80.3 and 172.4 g, respectively. Fish were fed to satiation twice a day with a diet containing 35.6% crude protein. Food consumption (C-max: kJ/day) increased with body size (W: g) according to the relationship: Ln C-max = 1.45 + 0.42 LnW. The final body contents of dry matter, crude protein and ash per unit body weight increased with increasing body size while contents of fat and energy were independent of body size. Specific growth rates of wet weight, dry weight, protein and energy decreased as the fish increased in size. Feed efficiencies in wet weigh, dry weight and crude protein decreased with increasing body size, while that of energy remained unchanged. The proportions of energy intake allocated to the various components (faecal energy, excretory energy, heat production and recovered energy) of the energy budget were not significantly affected by body size, and the average budget was: 100IE-18.5(+/- 1.33)FE + 5.9 (+/- 3.09)(ZE + UE) + 49.3(+/- 3.77)HE + 26.3(+/- 6.23)RE, where IE, FE, (ZE + UE), HE and RE represent gross energy intake, faecal energy, excretory (non-faecal) energy loss, heat production and recovered energy (growth), respectively. It is suggested that the decrease in growth rate in larger fish is mainly due to the decrease in relative food intake. (C) 1997 Elsevier Science B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Young grass carp (12-13 g) were kept at five ration levels ranging from starvation to ad libitum feeding at 30-degrees-C. They were fed duckweed. Food consumption, absorption efficiency and growth were determined directly, and metabolism and nitrogenous excretion calculated indirectly from energy and nitrogen budgets, respectively. The relationship between specific growth rate and ration size was linear. Absorption efficiency for energy was not affected by ration size and averaged 50.6 +/- 0.57% (mean +/- s.e.). Depending on ration size, energy lost in excretion accounted for 4.5-5.9% of the food energy, energy channelled to metabolism accounted for 34.4-48.3% of the food energy, and energy retained as growth accounted for 6.7-11.9% of the food energy. Regardless of ration, a constant proportion of food energy (30.7%) was accounted for by feeding metabolism (total metabolism minus fasting metabolism). The energy budget at the maximum ration was: 100 C = 49.1F + 4.5U + 3.6R(fa) + 30.9R(fe) + 11.9G, where C, F, U, R(fa), R(fe) and G represent food consumption, faecal production, excretion, fasting metabolism, feeding metabolism and growth, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The correlation between the energy band-gap of AlxGa1-xN epitaxial thin films and lattice strain was investigated using both High Resolution X-ray Diffraction (HRXRD) and Spectroscopic Ellipsometry (SE). The Al fraction, lattice relaxation, and elastic lattice strain were determined for all AlxGa1-xN epilayers, and the energy gap as well. Given the type of intermediate layer, a correlation trend was found between energy band-gap bowing parameter and lattice mismatch, the higher the lattice mismatch is, the smaller the bowing parameter (b) will be.