86 resultados para Addition de cuprate
Resumo:
Micronutrients play an important role in biological processes for wastewater treatment. Many industrial wastewaters lack in nutrients required for microbial growth, and this is one of the problems at many activated sludge plants treating them. In this study, the effects of the micronutrient niacin on the COD removal rates of textile wastewater, together with the effect of Mixed Liquor Suspended Solids (MLSS) on niacin, were studied. Certain improvement effects were found on the removal rates of COD, when 0.5 similar to 2.0 mg/L niacin was added to the textile wastewater. The optimal concentration of niacin was 1.0 mg/L, which was continuously added during textile wastewater treatment, and removal rates were 1.31 times compared to those of the control system. The concentration of MLSS was probably one of the factors influencing treatment efficiency, and the biological performance of treatment system could be optimized through micronutrient niacin supplements.
Resumo:
A polyploid hybrid fish with natural gynogenesis can prevent segregation and maintain their hybrid vigor in their progenies. Supposing the reproduction mode of induced polyploid fish being natural gynogenesis, allopolyploid hybrid between common carp and crucian carp into allopolyploid was performed. The purpose of this paper is to describe a lineage from sexual diploid carp transforming into allotriploid and allotetraploid unisexual clones by genome addition. The diploid hybrid between common carp and crucian carp reproduces an unreduced nucleus consisting of two parental genomes. This unreduced female pronucleus will fuse with male pronucleus and form allotriploid zygote after penetration of related species sperms. Allotriploid embryos grow normally, and part of female allotriploid can produce unreduced mature ova with three genomes. Mature ova of most allotriploid females are provided with natural gynogenetic trait and their nuclei do not fuse with any entrance sperm. All female offspring are produced by gynogenesis of allotriploid egg under activation of penetrating sperms. These offspring maintain morphological traits of their allotriploid maternal and form an allotetraploid unisexual clone by gynogenetic reproduction mode. However, female nuclei of rare allotriploid female can fuse with penetrating male pronuclei and result in the appearance of allotetraploid individuals by means of genome addition. All allotetraploid females can reproduce unreduced mature eggs containing four genomes. Therefore, mature eggs of allotetraploid maintain gynogenetic trait and allotetraploid unisexual clone is produced under activation of related species sperms.
Resumo:
Using Al-Mg and Al-Mg-Y alloys as raw materials and nitrogen as gas reactants, AIN powders and composite AIN powders by in-situ synthesis method were prepared. AIN lumps prepared by the nitriding of Al-Mg and Al-Mg-Y alloys have porous microstructure, which is favorable for pulverization. They have high purity, containing 1.23 % (mass fraction) oxygen impurity, and consisted of AIN single phase . The average particle size of AIN powders is 6.78 mum. Composite AlN powders consist of AlN phases and rare, earth oxide Y2O3 phase. The distribution of particle size of AIN powders shows two peaks. In view, of packing factor, AIN powders with such size distribution can easily be sintered to high density.
Resumo:
This paper proposes novel fast addition and multiplication circuits that are based on non-binary redundant number systems and single electron (SE) devices. The circuits consist of MOSFET-based single-electron (SE) turnstiles. We use the number of electrons to represent discrete multiple-valued logic states and we finish arithmetic operations by controlling the number of electrons transferred. We construct a compact PD2,3 adder and a 12x12bit multiplier using the PD2,3 adder. The speed of the adder can be as high as 600MHz with 400nW power dissipation. The speed of the adder is regardless of its operand length. The proposed circuits have much smaller transistors than conventional circuits.
Resumo:
Microporous HZSM-5 zeolite and mesoporous SiO2 supported Ru-Co catalysts of various Ru adding amounts were prepared and evaluated for Fischer-Tropsch synthesis (FTS) of gasoline-range hydrocarbons (C-5-C-12). The tailor-made Ru-Co/SiO2/HZSM-5 catalysts possessed both micro- and mesopores, which accelerated hydrocracking/hydroisomerization of long-chain products and provided quick mass transfer channels respectively during FTS. In the same time. Ru increased Cor reduction degree by hydrogen spillover, thus CO conversion of 62.8% and gasoline-range hydrocarbon selectivity of 47%, including more than 14% isoparaffins, were achieved simultaneously when Ru content was optimized at 1 wt% in Ru-Co/SiO2/HZSM-5 catalyst.