28 resultados para Adaptive Equalization. Neural Networks. Optic Systems. Neural Equalizer
Resumo:
A neural network-based process model is proposed to optimize the semiconductor manufacturing process. Being different from some works in several research groups which developed neural network-based models to predict process quality with a set of process variables of only single manufacturing step, we applied this model to wafer fabrication parameters control and wafer lot yield optimization. The original data are collected from a wafer fabrication line, including technological parameters and wafer test results. The wafer lot yield is taken as the optimization target. Learning from historical technological records and wafer test results, the model can predict the wafer yield. To eliminate the "bad" or noisy samples from the sample set, an experimental method was used to determine the number of hidden units so that both good learning ability and prediction capability can be obtained.
Resumo:
In this paper, we firstly give the nature of 'hypersausages', study its structure and training of the network, then discuss the nature of it by way of experimenting with ORL face database, and finally, verify its unsurpassable advantages compared with other means.
Resumo:
We continue the study of spiking neural P systems by considering these computing devices as binary string generators: the set of spike trains of halting computations of a given system constitutes the language generated by that system. Although the "direct" generative capacity of spiking neural P systems is rather restricted (some very simple languages cannot be generated in this framework), regular languages are inverse-morphic images of languages of finite spiking neural P systems, and recursively enumerable languages are projections of inverse-morphic images of languages generated by spiking neural P systems.
Resumo:
Enzymatic hydrolysis of cellulose was highly complex because of the unclear enzymatic mechanism and many factors that affect the heterogeneous system. Therefore, it is difficult to build a theoretical model to study cellulose hydrolysis by cellulase. Artificial neural network (ANN) was used to simulate and predict this enzymatic reaction and compared with the response surface model (RSM). The independent variables were cellulase amount X-1, substrate concentration X-2, and reaction time X-3, and the response variables were reducing sugar concentration Y-1 and transformation rate of the raw material Y-2. The experimental results showed that ANN was much more suitable for studying the kinetics of the enzymatic hydrolysis than RSM. During the simulation process, relative errors produced by the ANN model were apparently smaller than that by RSM except one and the central experimental points. During the prediction process, values produced by the ANN model were much closer to the experimental values than that produced by RSM. These showed that ANN is a persuasive tool that can be used for studying the kinetics of cellulose hydrolysis catalyzed by cellulase.
Resumo:
Resumo:
This paper gives a condition for the global stability of a continuous-time hopfield neural network when its activation function maybe not monotonically increasing.
Resumo:
A novel approach is proposed for the simultaneous optimization of mobile phase pH and gradient steepness in RP-HPLC using artificial neural networks. By presetting the initial and final concentration of the organic solvent, a limited number of experiments with different gradient time and pH value of mobile phase are arranged in the two-dimensional space of mobile phase parameters. The retention behavior of each solute is modeled using an individual artificial neural network. An "early stopping" strategy is adopted to ensure the predicting capability of neural networks. The trained neural networks can be used to predict the retention time of solutes under arbitrary mobile phase conditions in the optimization region. Finally, the optimal separation conditions can be found according to a global resolution function. The effectiveness of this method is validated by optimization of separation conditions for amino acids derivatised by a new fluorescent reagent.
Resumo:
A novel method for the optimization of pH value and composition of mobile phase in HPLC using artificial neural networks and uniform design is proposed. As the first step. seven initial experiments were arranged and run according to uniform design. Then the retention behavior of the solutes is modeled using back-propagation neural networks. A trial method is used to ensure the predicting capability of neural networks. Finally, the optimal separation conditions can be found according to a global resolution function. The effectiveness of this method is validated by optimization of separation conditions for both basic and acidic samples.
Resumo:
A slab optical waveguide (SOWG) has been used for study of adsorption of both methylene blue (MB) and new methylene blue (NMB) in liquid-solid interface. Adsorption characteristics of MB and NMB on both bare SOWG and silanized SOWG by octadecyltrichlorosilane (ODS) were compared. The simultaneous determinations of both MB and NMB were explored by flow injection SOWG spectrophotometric analysis and artificial neural networks (ANNs) for the first time. Concentrations of MB and NMB were estimated simultaneously with the ANNs. Results obtained with SOWG were compared with those got by conventional UV-visible spectrophotometry. (C) 2003 Elsevier Science B.V All rights reserved.
Resumo:
The new topological indices A(x1)-A(x3) suggested in our laboratories were applied to the study of structure-property relationships between color reagents and their color reactions with yttrium. The topological indices of twenty asymmetrical phosphone bisazo derivatives of chromotropic acid were calculated. The work shows that QSPR can be used as a novel aid to predict the molar absorptivities of color reactions and in the long term to be helpful tool in-color reagent design. Multiple regression analysis and neural network were employed simultaneously in this study. The results demonstrated the feasibility and the effectiveness of the method.
Resumo:
Quantitative structure-activity/property relationships (QSAR/QSPR) studies have been exploited extensively in the designs of drugs and pesticides, but few such studies have been applied to the design of colour reagents. In this work, the topological indices A(x1)-A(x3) suggested in this laboratory were applied to multivariate analysis in structure-property studies. The topological indices of 43 phosphone bisazo derivatives of chromotropic acid were calculated. The structure-property relationships between colour reagents and their colour reactions with cerium were studied using A(x1-Ax3) indices with satisfactory results. The purpose of this work was to establish whether QSAR can be used to predict the contrasts of colour reactions and in the longer term to be a helpful tool in colour reagent design.
Resumo:
In this paper, the new topological indices A(x1)-A(x3) suggested in our laboratory and molecular connectivity indices have been applied to multivariate analysis in structure-property studies. The topological indices of twenty asymmetrical phosphono bisazo derivatives of chromotropic acid have been calculated. The structure-property relationships between colour reagents and their colour reactions with ytterbium have been studied by A(x1)-A(x3) indices and molecular connectivity indices with satisfactory results. Multiple regression analysis and neural networks were employed simultaneously in this study.
Resumo:
Quantitative structure-toxicity models were developed that directly link the molecular structures of a et of 50 alkYlated and/or halogenated phenols with their polar narcosis toxicity, expressed as the negative logarithm of the IGC50 (50% growth inhibitor