75 resultados para Aberdeen Proving Ground (Md.)--Maps.
Resumo:
To better understand the evolution of genome organization of eutherian mammals, comparative maps based on chromosome painting have been constructed between human and representative species of three eutherian orders: Xenarthra, Pholidota, and Eulipotyphla,
Resumo:
Cross- species chromosome painting has made a great contribution to our understanding of the evolution of karyotypes and genome organizations of mammals. Several recent papers of comparative painting between tree and flying squirrels have shed some light
Resumo:
Restriction site mapping of mitochondrial DNA (mtDNA) with 16 restriction endonucleases was used to examine the phylogenetic relationships of Ochotona cansus, O. huangensis, O. thibetana, O. curzoniae and O. erythrotis. A 1-kb length variation between O. erythrotis of subgenus Pika and other four species of subgenus Ochotona was observed, which may be a useful genetic marker for identifying the two subgenera. The phylogenetic tree constructed using PAUP based on 61 phylogenetically informative sites suggests that O. erythrotis diverged first, followed by O. cansus, while O. curzoniae and O. huangensis are sister taxa related to O. thibetana, The results indicate that both O. cansus and O. huangensis should be treated as independent species. If the base substitution rate of pikas mtDNA was 2% per million years, then the divergence time of the two subgenera, Pika and Ochotana, is about 8.8 Ma ago of late Miocence, middle Bao-dian of Chinese mammalian age, and the divergence of the four species in subgenus Ochotona would have occurred about 2.5 - 4.2 Ma ago, Yushean of Chinese mammalian age. This calculation appears to be substantiated by the fossil record.
Resumo:
Mitochondrial DNA restriction maps for 12 restriction enzymes of four species of muntjacs-Indian muntjac (M. muntjak), Gongshan muntjac (M. gongshanensis), black muntjac (M. crinifrons), and Chinese muntjac (M. reevesi)-were compared to estimate the phylogenetic relationships among them. Phylogenetic trees were constructed by both distance and parsimony methods. The two resulting trees share a similar topology, which indicates that the black muntjac and the Gongshan muntjac are closely related, followed by the Chinese muntjac; the Indian muntjac is the sister taxon to all the other muntjacs.
Resumo:
对云南轿子雪山自然保护区地表甲虫物的种组成及生物多样性季节变化进行了连续跟踪调查.调查结果如下:(1)通过对4种典型微环境样地(草地、灌丛、林地以及农田生态系统)连续3次跟踪连续调查,共获得标本2451头,分别隶属于24科.其中步甲科(Carabidae)为优势类群,占总数的62.10%;隐翅虫科(Staphylinidae)其次,占12.77%.可能由于海拔、气温等因素影响,该地区昆虫活动高峰期较短.(2)通过对4种典型微生态环境中地表甲虫的生物多样性的比较,表明不同生境内甲虫的多样性指数存在动态变化,在不同生境片区内甲虫存在迁移活动,甲虫多在灌丛中越冬,并随季节及食物源迁移.
Resumo:
This study has developed an improved subjective approach of classification in conjunction with Step wise DFA analysis to discriminate Chinese sturgeon signals from other targets. The results showed that all together 25 Chinese sturgeon echo-signals were detected in the spawning ground of Gezhouba Dam during the last 3 years, and the identification accuracy reached 90.9%. In Stepwise DFA, 24 out of 67 variables were applied in discrimination and identification. PCA combined with DFA was then used to ensure the significance of the 24 variables and detailed the identification pattern. The results indicated that we can discriminate Chinese sturgeon from other fish species and noise using certain descriptors such as the behaviour variables, echo characteristics and acoustic cross-section characteristics. However, identification of Chinese sturgeon from sediments is more difficult and needs a total of 24 variables. This is due to the limited knowledge about the acoustic-scattering properties of the substrate regions. Based on identified Chinese sturgeon individuals, 18 individuals were distributed in the region between the site of Gezhouba Dam and Miaozui reach, with a surface area of about 3.4 km(2). Seven individuals were distributed in the region between Miaozui and Yanshouba reach, with a surface area of about 13 km(2).
Resumo:
The effects of organic-rich sediment and sulfide exposure on Hydrilla verticillata were investigated. The organic richness of sediment was simulated by adding sucrose into sediments, and sulfide exposure was conducted by adding sodium sulfide to plant roots. The length, biomass and density of shoot reduced in the sucrose-amended sediments, and the largest reduction occurred in the highest 1.0% addition treatment by 84.2%, 56.7% and 92.4%, respectively. However, the 0.1% addition treatment stimulated the growth of root. The effects of below-ground sulfide exposure on the physiological activities of H. verticillata were determined by adding sulfide to the below-ground tissue. Significantly inhibitory effects of sulfide were observed on plant photosynthesis, root carbohydrate and nitrogen synthetic reserves. The net photosynthetic rates, soluble carbohydrate and soluble protein contents in root were reduced by 104%, 71.8% and 49.8%, respectively, in the 0.6 mM sulfide treatment.
Resumo:
Urbanization can exert a profound influence on land covers and landscape characteristics. In this study, we characterize the impact of urbanization on land cover and lacustrine landscape and their consequences in a large urban lake watershed, Donghu Lake watershed (the largest urban lake in China), Central China, by using Landsat TM satellite images of three periods of 1987, 1993 and 1999 and ground-based information. We grouped the land covers into six categories: water body, vegetable land, forested land, shrub-grass land, open area and urban land, and calculated patch-related landscape indices to analyze the effects of urbanization on landscape features. We overlaid the land cover maps of the three periods to track the land cover change processes. The results indicated that urban land continuously expanded from 9.1% of the total watershed area in 1987, to 19.4% in 1993, and to 29.6% in 1999. The vegetable land increased from 7.0% in 1987, 11.9% in 1993, to 13.9% in 1999 to sustain the demands of vegetable for increased urban population. Concurrently, continuous reduction of other land cover types occurred between 1987 and 1999: water body decreased from 30.4% to 23.8%, and forested land from 33.6% to 24.3%. We found that the expansion of urban land has at least in part caused a decrease in relatively wild habitats, such as urban forest and lake water area. These alterations had resulted in significant negative environmental consequences, including decline of lakes, deterioration of water and air quality, and loss of biodiversity.
Resumo:
The crystal structure, mechanical properties and electronic structure of ground state BeH2 are calculated employing the first-principles methods based on the density functional theory. Our calculated structural parameters at equilibrium volume are well consistent with experimental results. Elastic constants, which well obey the mechanical stability criteria, are firstly theoretically acquired. The bulk modulus B, Shear modulus G, Young's modulus E, and Poisson's ratio upsilon are deduced from the elastic constants. The bonding nature in BeH2 is fully interpreted by combining characteristics in band structure, density of states, and charge distribution. The ionicity in the Be-H bond is mainly featured by charge transfer from Be 2s to H 1s atomic orbitals while its covalency is dominated by the hybridization of H 1s and Be 2p states. The Bader analysis of BeH2 and MgH2 are performed to describe the ionic/covalent character quantitatively and we find that about 1.61 (1.6) electrons transfer from each Be (Mg) atom to H atoms.
Resumo:
The mechanical properties, electronic structure and phonon dispersion of ground state ThO2 as well as the structure behavior up to 240 GPa are studied using first-principles density-functional theory. Our calculated elastic constants indicate that both the ground-state fluorite structure and high pressure cotunnite structure of ThO2 are mechanically stable. The bulk modulus, shear modulus, and Young's modulus of cotunnite ThO2 are all smaller by approximately 25% compared with those of fluorite ThO2. The Poisson's ratios of both structures are approximately equal to 0.3 and the hardness of fluorite ThO2 is 22.4 GPa. The electronic structure and bonding nature of fluorite ThO2 are fully analyzed, and show that the Th-O bond displays a mixed ionic/covalent character. The phase transition from the fluorite to cotunnite structure is calculated to occur at the pressure of 26.5 GPa, consistent with recent experimental measurement by ldiri et al. [1]. For the cotunnite phase it is further predicted that an isostructural transition takes place in the pressure region of 80-130 GPa.
Resumo:
Ce doped Bi12SiO20 single crystals were grown either on board of the Chinese Spacecraft-Shenzhou No.3 (SZ-3) or on the ground at the same conditions with the exception of microgravity. The surface morphology of crystals clearly showed significant differences between the space- and ground-grown portions. The space- and ground-grown crystals have been measured by X-ray rocking curve, Cc concentration distribution in growth direction, dislocation density, absorption spectrums. These results show that the compositional homogeneity and structural perfection of Ce doped crystal grown in space are obviously improved.
Electron ground state energy level determination of ZnSe self-organized quantum dots embedded in ZnS
Resumo:
Optical and electrical characterization of the ZnS self-organized quantum dots (QDs) embedded in ZnS by molecular beam epitaxy have been investigated using photoluminescence (PL), capacitance-voltage (C-V), and deep level transient Fourier spectroscopy (DLTFS) techniques. The temperature dependence of the free exciton emission was employed to clarify the mechanism of the PL thermal quenching processes in the ZnSe QDs. The PL experimental data are well explained by a two-step quenching process. The C-V and DLTFS techniques were used to obtain the quantitative information on the electron thermal emission from the ZnSe QDs. The correlation between the measured electron emission from the ZnSe QDs in the DLTFS and the observed electron accumulation in the C-V measurements was clearly demonstrated. The emission energy for the ground state of the ZnSe QDs was determined to be at about 120 meV below the conduction band edge of the ZnS barrier, which is in good agreement with the thermal activation energy, 130 meV, obtained by fitting the thermal quenching process of the free exciton PL peak. (C) 2003 American Institute of Physics.