76 resultados para ASCORBIC ACID
Resumo:
In-situ microscopic FTIR spectroelectrochemical technique(MFTIRs) was applied to studying the electrochemical oxidation of ascorbic acid(AA) in poly(ethylene glycol)(PEG) paste at a 100 mu m diameter Pt disk electrode. Using this technique, the catalytic ability of cobalt hexacyanoferrate(CoHCF) microcrystalline toward AA oxidation was also studied, it was found that the dispersed CoHCF powder in the PEG paste can generate well-shaped thin-layer cyclic voltammetric waves with the peak height proportional to the scan rate, corresponding to the Fe centered redox reactions. This oxidation step catalyzed the AA oxidation. Also, this pasted CoHCF powder generated well-resolved in-situ MFTIRs spectra, by which a chemical interaction between C = C bond of AA ring and CoHCF lattice was revealed. A corresponding surface docking mechanism for the catalytic reaction has been proposed.
Resumo:
The electrode reaction process of ascorbic (Vc) was studied by in-situ circular dichroic(CD) spectroelectrochemistry with a long optical path thin layer cell on glassy carbon(GC) electrode. The spectroelectrochemical data were analyzed by the double logarithmic method together with nonlinear regression. The results suggested that the mechanism of Ve in pH 7.0 phosphate buffer solution at GC electrode was a two-electron irreversible electrooxidation followed by adsorption of the oxidation product. That is a self-accelerated process. Some kinetic parameters at free and at adsorbed electrode surface, i.e, the formal potentials, E-0' = 0.09 V, E-a(0') = 0.26 +/- 0.02 V; the electron transfer coefficient and number of transfered electron, alpha n = 0.41, alpha(a)n = 0.07;the standard heterogeneous electron transfer rate constant, k(0) = 8.0 x 10(-5) cm.s(-1), k(a)(0) = 1.9 x 10(-4) cm.s(-1) and adsorption constant, beta = 102.6 were also estimated.
Resumo:
(A) novel chemiluminescence (CL) system was evaluated for the determination of hydrogen peroxide, glucose and ascorbic acid based on hydrogen peroxide, which has a catalytic-cooxidative effect on the oxidation of luminol by KIO4. Hydrogen peroxide can be directly determined by luminol-KIO4 -H2O2 CL system. The detection limit was 3.0 x 10(-8) mol l(-1) and the calibration graph was linear over the range of 2.0 x 10(-7)-6.0 x 10(-4) mol l(-1). The relative standard deviation of H2O2 was 1.1% for 2.0 x 10(-6) mol l(-1) (N = 11). Glucose was indirectly determined through measuring the H2O2 generated by the oxidation of glucose in the presence of glucose oxidase at pH 7.6. The present method provides a source for H2O2, which, in turn, coupled with the luminol-KIO4-H2O2 CL reaction system. The CL was linearly correlated with glucose concentration of 0.6-110 mu g ml(-1). The relative standard deviation was 2.1% for 10 mu g ml(-1) (N = 11). Detection limit of glucose was 0.08 mu g ml(-1). Ascorbic acid was also indirectly determined by the suppression of luminol-KIO4-H2O2 CL system. The calibration curve was linear over the range of 1.0 x 10(-7)-1.0 x 10(-5) mol l(-1) of ascorbic acid. The relative standard deviation was 1.0% for 8.0 x 10(-7) mol l(-1) (N = 11). Detection limit of ascorbic acid was 6.0 x 10(=8) mol l(-1). These proposed methods have been applied to determine glucose, ascorbic acid in tablets and injection. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
In situ microscopic FTIR spectroelectrochemistry behavior of L-ascorbic acid (H(2)A) in polymer electrolyte is reported for the first time. H(2)A undergoes a two-step oxidation, The oxidation waves shift towards more anodic potential values when the scan rate increases. The peak currents of the oxidation waves are proportional to the square roots of scan rate up to 100 mV/s, The in situ infrared spectra suggest that the product of the oxidation be dehydroascorbic acid, which may exist as a dimer.
Resumo:
The theoretical model[17] of an ultramicroelectrode modified with a redox species film is used as the diagnostic tool to characterize the catalytic oxidation of ascorbic acid at carbon fiber ultramicrodisk electrodes coated with an Eastman-AQ-Os(bpy)(3)(2+) film. The electrocatalytic behavior of ascorbic acid at the ultramicroelectrode modified by an Eastman-AQ polymer containing tris(2,2'-bipyridine) osmium(III/II) as mediators is described. In order to determine the five characteristic currents quantitatively, the radius of the ultramicroelectrode and the concentration of ascorbic acid are varied systematically. The kinetic zone diagram has been used to study the electrocatalytic system. This system with 0.5-2.75 mM ascorbic acid belongs to SR + E case, and the concentration profiles of the catalyst in the film are given in detail. Finally, optimizing the design of catalytic system is discussed.
Resumo:
The electrooxidation of ascorbic acid (AA) at the bis(4-pyridyl)disulfide (PySSPy) modified gold electrode was studied. The results showed that the oxidation process was pH-dependent. It was mainly due to the static interaction between AA and the modified
Resumo:
A conducting polyaniline (PAn) film modified glassy carbon (GC) electrode was prepared by electrochemical polymerization. The electrochemical behavior of ascorbic acid (AH(2)) in aqueous solution at this PAn modified electrode was studied in detail. The experimental results show that PAn film modified electrode has good electrocatalytic activity on the oxidation of ascorbic acid in aqueous solution over a wide range of pH value, among which pH 4 is the optimum condition. The oxidation process of ascorbic acid at PAn film electrode can be regarded as an EC catalytic mechanism. The kinetic process of the catalytic reaction was investigated by rotating disk electrode (RDE) coated with PAn films. The rate constant of the catalytic reaction was evaluated. The catalytic peak currents are proportional to the concentrations tions of ascorbic acid in the range of 5 x 10(-2)-1 x 10(-6) mol . L-1. The PAn film elec trodes give very stable responce for the oxidation of ascorbic acid. The present investigation shows the posibility of using PAn film modified electrode for the determination of ascorbic acid.
Resumo:
The preparation and the behaviour of a Prussian Blue (PB) film on a platinum microdisk electrode has been described. Electrocatalytic oxidation of ascorbic acid has occurred at the PB film modified microelectrode. This shows a typical example of a modified microelectrode in electrocatalysis following our previous theoretical studies (J. Electroanal. Chem., 309 (1991) 103) and the related catalytic reaction rate constant was determined.
Resumo:
The kinetics of prussian blue (PB) film itself during the redox process and of the catalytic oxidation of ascorbic acid (AH_2) on it have been studied in detail. The charge transfer diffusion coefficient D_(ct) in PB film is determined as 2.62×10~(-10)cm~2·s~(-1), using potential-step chronoamperometry, chronocoulometry and constant-current chronopotentialmetry, respectively. The rate constant of the cross-exchange reaction between AH_2 in solution and the active centers in PB film is measured in rotating d...
Resumo:
4-Aminobenzoic acid (4-ABA) was covalently grafted on a glassy carbon electrode (GCE) by amine cation radical formation in the electrooxidation process of the amino-containing compound. X-ray photoelectron spectroscopy measurement proves the presence of 4-carboxylphenylamine monolayer on the GCE. The redox responses of various electroactive probes were investigated on the 4-ABA-modified GCE. Electron transfer to Fe(CN)(6)(3-) in solutions of various pHs was studied by both cyclic voltammetry and electrochemical impedance analysis on the modified electrode. Changes in the solution pH value result in the variation of the terminal group charge state, based on which surface pK(a) values are estimated. The 4-ABA-modified GCE was used as a suitable charged substrate to fabricate polyoxometalates-consisting (POM-consisting) monolayer and multilayer films through layer-by-layer assembly based on electrostatic attraction. Cyclic voltammetry shows the uniform growth of these three-dimensional multilayer films. Taking K10H3[Pr-(SiMo7W4O39)(2)]. H2O (abbreviated as Pr(SiMo7W4)(2)), for example, the preparation and electrochemical behavior of its monolayer and multilayer film had been investigated in detail. This modification strategy is proven to be a general one suitable for anchoring many kinds of POMs on the 4-ABA-modified GCE.
Resumo:
<正> 维生素C,又称丙种维生素,VitaminumC,抗坏血酸(Ascorbic acid),简称维C或Vc。维生素C是一种酸性己糖衍生物。化学名称为L—3—氧带苏己糖醛酸内酯。分子式为C_6H_8O_6,分子量为176.1。1维生素C的性状 外观为白色结晶粉末,有酸味,久置色渐变微黄色,易溶于水,水溶液呈酸性反应。稍溶于乙醇,微溶于甘油,不溶于乙醚和氯仿。熔点为190℃。抗坏血酸钠为白色或微黄色结晶粉末,略带酸味,只溶于水,基本上不溶于乙醇、乙醚等。在220℃时分解。 维生素C是动物的重要营养成分之一
Resumo:
When tobacco BY-2 cells were treated with 60 mu g/mL MC-RR for 5 d, time-dependent effects of MC-RR on the cells were observed. Morphological changes such as abnormal elongation, evident chromatin condensation and margination, fragmentation of nucleus and formation of apoptotic-like bodies suggest that 60 mu g/mL MC-RR induced rapid apoptosis in tobacco BY-2 cells. Moreover, there was a significant and rapid increase of ROS level before the loss of mitochondrial membrane potential (Delta Psi(m)) and the onset of cell apoptosis. Ascorbic acid (AsA), a major primary antioxidant, prevented the increase of ROS generation, blocked the decrease in Delta Psi(m) and subsequent cell apoptosis, indicating a critical role of ROS in serving as an important signaling molecule by causing a reduction of Delta Psi(m) and MC-RR-induced tobacco BY-2 cell apoptosis. In addition, a specific mitochondrial permeability transition pores (PTP) inhibitor, cyclosporin A (CsA), significantly blocked the MC-RR-induced ROS formation, loss of Delta Psi(m), as well as cell apoptosis when the cells were MC-RR stressed for 3 d, suggesting that PTP is involved in 60 mu g/mL MC-RR-induced tobacco cell apoptosis signalling process. Thus, we concluded that the mechanism of MC-RR-induced apoptosis signalling pathways in tobacco BY-2 cells involves not only the excess generation of ROS and oxidative stress, but also the opening of PTP inducing loss of mitochondrial membrane potential. (C) 2007 Published by Elsevier Ltd.
Resumo:
The objective of this study was to determine the effect of dietary vitamins A, D-3, E, and C on the gonad development, lipid peroxidation, and immune response of yearling rice field eel, Monopterus albus. A 6-wk feeding trial was designed according to an L-16(4(5)) orthogonal design, in which four vitamins, each at four supplementation levels, were arranged. Sixteen diets were mixed with the different vitamin levels and randomly assigned to 16 groups of fish. Increasing dietary vitamin E supplementation level significantly (P <= 0.05) increased the gonadosomatic index and lowered the serum content of malondialdehyde of rice field eel. Increasing dietary vitamin A and C levels also showed similar effect, but the differences were not statistically significant. Serum immunoglobulin M content increased significantly (P <= 0.01) as dietary vitamin C supplementation levels increased. The concentrations of calcium in bones showed significant (P <= 0.05) trend with vitamin D-3 and A supplementation levels, but the bone phosphorus content was not affected by the dietary vitamin levels.
Resumo:
This paper reports a new method for detection of ROS scavengers including superoxide dismutase, ascorbic acid and glutathione based on a 'probe' of peroxidase-oxidase biochemical oscillator. The oscillation period and amplitude change with different concentrations of scavengers. The linear ranges of superoxide dismutase, ascorbic acid and glutathione are respectively 1.56 x 10(-4)-1.56 x 10(-3) mg mL(-1), 1.75 x 10(-7) -1.75 x 10(-5) mol L-1 and 9.38 x 10(-7) -7.5 x 10(-5) mol L-1. The selectivity, linearity and precision for superoxide dismutase, ascorbic acid, and glutathione are presented and discussed. The results compared well with other standard methods for determination of superoxide dismutase, ascorbic acid and glutathione. Some possible steps in the overall reaction mechanisms are discussed.
Resumo:
A glutamate biosensor based on the electrocatalytic oxidation of reduced nicotinamide adenine dinucleotide (NADH), which was generated by the enzymatic reaction, was developed via employing a single-walled carbon nanotubes/thionine (Th-SWNTs) nanocomposite as a mediator and an enzyme immobilization matrix. The biosensor, which was fabricated by immobilizing glutamate dehydrogenase (GIDH) on the surface of Th-SWNTs, exhibited a rapid response (ca. 5 s), a low detection limit (0.1 mu M), a wide and useful linear range (0.5-400 mu M), high sensitivity (137.3 +/- 15.7) mu A mM(-1) cm(-2), higher biological affinity, as well as good stability and repeatability. In addition, the common interfering species, such as ascorbic acid, uric acid, and 4-acetamidophenol, did not cause any interference due to the use of a low operating potential (190 mV vs. NHE). The biosensor can be used to quantify the concentration of glutamate in the physiological level. The Th-SWNTs system represents a simple and effective approach to the integration of dehydrogenase and electrodes, which can provide analytical access to a large group of enzymes for wide range of bioelectrochemical applications including biosensors and biofuel cells.