102 resultados para (C5ME5)2SM(THF)2


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The half-sandwich tert-butyl cyclopentadienyl lanthanoid complexes {[Cp ' Ln(THF)](2)(mu (2)-Cl)(2)(mu (3)-Cl)(3)Na(THF)}(n) [Cp ' = eta (5)-' BuC5H4; Ln = Nd (1a), Sm (1b), Gd (1c), Yb (1d)] are prepared by the reaction of anhydrous lanthanoid trichloride, LnCl(3), with NaCp ' in THF solution. Complex 1b reacts with Na2Se5 to give hexanuclear samarium polyselenide complexes [Na(THF)(6)](2)[Cp-6' SM6(mu (6)-Se)(mu -Se-2)(6)] (2). An analogous cyclopentadienyl neodymium polyselenide complex [Li(THF)(4)](2)[Cp6Nd6(mu (6)-Se)(mu -Se-2)(6)] (3) is synthesized by the reaction of [CpNdCl2. 2LiCl . 5THF] with Na2Se5 in THF solution. The molecular structures of 1a and 2 were determined by X-ray crystal structure analysis. Complex 2 contains an interstitial selenium atom which is coordinated with six samarium atoms. (C) 2001 Elsevier Science BN. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alkane elimination reactions of rare earth metal tris(alkyl)s, Ln(CH2SiMe3)3(THF)2 (Ln = Y, Lu) with the multidentate ligands HL1-4, afforded a series of new rare earth metal complexes. Yttrium, complex I supported by flexible amino-intino phenoxide ligand HL1 was isolated as homoleptic product. In the reaction of rigid phosphino-imino phenoxide ligand HL 2 with equintolar Ln(CH2SiMe3)3(THF)2, HL 2 was deprotonated by the metal alkyl and its imino C=N group was reduced to C-N by intramolecular alkylation, generating THF-solvated mono-alkyl complexes (2a: Ln = Y; 2b: Ln = Lu). The di-ligand chelated yttriurn complex 3 without alkyl moiety was isolated when the molar ratio of HL 2 to Y(CH,SiMe3)3(THF)2 increased to 2: 1. Reaction of steric phosphino beta-ketoiminato ligand HL 3 with equimolar Ln(CH2SiMe3)3(THF)2 afforded di-ligated mono-alkyl complexes (4a: Ln = Y; 4b: Ln = Lu) without occurrence of intramolecular alkylation or formation of homoleptic product. Treatment of tetradentate methoxy-amino phenol HL 4 with Y(CH2SiMe3)3(THF)2 afforded a monomeric yttrium bis-alkyl complex of THF-free. The resultant complexes were characterized by IR, NMR spectrum and X-ray diffraction analyses.All alkyl complexes exhibited high activity toward the ring-opening polymerization Of L-lactide to give isotactic polylactide with controllable molecular weight and narrow to moderate polydispersity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The N,N- bidentate ligands 2- {( N- 2,6- R) iminomethyl)} pyrrole ( HL1, R) dimethylphenyl; HL2, R) diisopropylphenyl) have been prepared. HL1 reacted readily with 1 equiv of lanthanide tris( alkyl)s, Ln(CH2SiMe3)(3)(THF)(2), affording lanthanide bis(alkyl) complexes L(1)Ln(CH2SiMe3)(2)(THF)(n) (1a, Ln= Lu, n = 2; 1b, Ln = Sc, n = 1) via alkane elimination. Reaction of the bulky ligand HL2 with 1 equiv of Ln(CH2SiMe3)(3)( THF)(2) gave the bis(pyrrolylaldiminato) lanthanide mono(alkyl) complexes L(2)(2)Ln- (CH2SiMe3)(THF) (2a, Ln) Lu; 2b, Ln = Sc), selectively. The N,N- bidentate ligand HL3, 2- dimethylaminomethylpyrrole, reacted with Ln( CH2SiMe3) 3( THF) 2, generating bimetallic bis( alkyl) complexes of central symmetry ( 3a, Ln = Y; 3b, Ln = Lu; 3c, Ln = Sc). Treatment of the N,N,N,N- tetradentate ligand H2L4, 2,2'-bis(2,2-dimethylpropyldiimino) methylpyrrole, with equimolar Lu(CH2SiMe3)(3)(THF)(2) afforded a C-2- symmetric binuclear complex ( 4). Complexes 3a, 3b, 3c, and 4 represent rare examples of THF- free binuclear lanthanide bis( alkyl) complexes supported by non- cyclopentadienyl ligands. All complexes have been tested as initiators for the polymerization of isoprene in the presence of AlEt3 and [ Ph3C][B(C6F5)(4)]. Complexes 1a, 1b, and 3a show activity, and 1b is the most active initiator, whereas 2a, 2b, 3b, 3c, and 4 are inert.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anilido phosphinimino ancillary ligand H2L1 reacted with one equivalent of rare earth metal trialkyl [Ln{CH2Si(CH3)(3)}(3)(thf)(2)] (Ln = Y, Lu) to afford rare earth metal monoalkyl complexes [L(1)LnCH(2)Si(CH3)(3)(THF)] (1a: Ln = Y; 1b: Ln = Lu). In this process, deprotonation of H2L1 by one metal alkyl species was followed by intramolecular C-H activation of the phenyl group of the phosphine moiety to generate dianionic species L-1 with release of two equivalnts of tetramethylsilane. Ligand L-1 coordinates to Ln(3+) ions in a rare C,N,N tridentate mode. Complex 1a reacted readily with two equivalents of 2,6-diisopropylaniline to give the corresponding bis-amido complex [(HL1)LnY(NHC(6)H(3)iPr(2)-2,6)(2)] (2) selectively, that is, the C-H activation of the phenyl group is reversible. When 1a was exposed to moisture, the hydrolyzed dimeric complex [{(HL1)Y(OH)}(2)](OH)(2) (3) was isolated. Treatment of [Ln{CH2Si(CH3)(3)}(3)-(thf)(2)] with amino phosphine ligands HL2-R gave stable rare earth metal bisalkyl complexes [(L2-R)Ln{CH2Si(CH3)(3)}(2)(thf)] (4a: Ln=Y, R=Me; 4b: Ln=Lu, R=Me; 4c: Ln=Y, R=iPr; 4d: Ln=Y, R=iPr) in high yields. No proton abstraction from the ligand was observed. Amination of 4a and 4c with 2,6-diisopropylaniline afforded the bis-amido counterparts [(L2-R)Y(NHC(6)H(3)iPr(2)-2,6)(2)(thf)] (5a: R=Me; 5b: R=iPr).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The N,N-bidentate ligand 2-{(N-2,6-diisopropylphenyl)iminomethyl)}pyrrole (L-1) and the N,N,P-tridentate ligand 2-{(N-2-diphenylphosphinophenyl)iminomethyl)}pyrrole (L-2) have been prepared. Their reactions with homoleptic yttrium tris(alkyl) compound Y(CH2SiMe3)(3)(THF)(2) have been investigated. Treatment of Y(CH2SiMe3)(3)(THF)(2) with 1 equiv of L-1 generated a THF-solvated bimetallic (pyrrolylaldiminato)yttrium mono(alkyl) complex (1) of central symmetry. In this process, L-1 is deprotonated by metal alkyl and its imino CN group is reduced to C-N by intramolecular alkylation, generating dianionic species that bridge two yttrium alkyl units in a unique eta(5)/eta(1):kappa(1) mode. The pyrrolyl ring behaves as a heterocyclopentadienyl ligand. Reaction of Y(CH2SiMe3)(3)(THF)(2) with 2 equiv of L-1 afforded the monomeric bis(pyrrolylaldiminato)yttrium mono(alkyl) complex (2), selectively. Amination of 2 with 2,6-diisopropylaniline gave the corresponding yttrium amido complex (3). In 3 the pyrrolide ligand is monoanionic and bonds to the yttrium atom in a eta(1):kappa(1) mode. The homoleptic tris(eta(1):kappa(1)-pyrrolylaldiminato)yttrium complex (4) was isolated when the molar ratio of L-1 to Y(CH2SiMe3)(3)(THF)(2) increases to 3:1. Reaction of L-2 with equimolar Y(CH2SiMe3)(3)(THF)(2) afforded an asymmetric binuclear complex (5).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reactions of neutral amino phosphine compounds HL1-3 with rare earth metal tris(alkyl)s, Ln(CH2SiMe3)(3)(THF)(2), afforded a new family of organolanthanide complexes, the molecular structures of which are strongly dependent on the ligand framework. Alkane elimination reactions between 2-(CH3NH)-C6H4P(Ph)(2) (HL1) and Lu(CH2SiMe3)(3)(THF)(2) at room temperature for 3 h generated mono(alkyl) complex (L-1)(2)Lu(CH2SiMe3)(THF) (1). Similarly, treatment of 2-(C6H5CH2NH)-C6H4P(Ph)(2) (HL2) with Lu(CH2SiMe3)(3)(THF)(2) afforded (L-2)(2)Lu(CH2SiMe3)(THF) (2), selectively, which gradually deproportionated to a homoleptic complex (L-2)(3)Lu (3) at room temperature within a week. Strikingly, under the same condition, 2-(2,6-Me2C6H3NH)-C6H4P(Ph)(2) (HL3) swiftly reacted with Ln(CH2SiMe3)(3)(THF)(2) at room temperature for 3 h to yield the corresponding lanthanide bis(alkyl) complexes L(3)Ln(CH2SiMC3)(2)(THF)(n) (4a: Ln = Y, n = 2; 4b: Ln = Sc, n = 1; 4c: Ln = Lu, n = 1; 4d: Ln = Yb, n = 1; 4e: Ln = Tm, n = 1) in high yields. All complexes have been well defined and the molecular structures of complexes 1, 2, 3 and 4b-e were confirmed by X-ray diffraction analysis. The scandium bis(alkyl) complex activated by AlEt3 and [Ph3C][B(C6F5)(4)], was able to catalyze the polymerization of ethylene to afford linear polyethylene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methoxy-modified beta-diimines HL1 and HL2 reacted with Y(CH2SiMe3)(3)(THF)(2) to afford the corresponding bis(alkyl)s [(LY)-Y-1(CH2SiMe3)(2)] (1) and [(LY)-Y-2(CH2SiMe3)(2)] (2), respectively. Amination of 1 with 2,6-diisopropyl aniline gave the bis(amido) counterpart [(LY)-Y-1{N(H)(2,6-iPr(2)-C6H3)}(2)] (3), selectively. Treatment of Y(CH2SiMe3)(3)(THF)(2) with methoxy-modified anilido imine HL3 yielded bis(alkyl) complex [(LY)-Y-3(CH2SiMe3)(2)(THF)] (4) that sequentially reacted with 2,6-diisopropyl aniline to give the bis(amido) analogue [(LY)-Y-3{N(H)(2,6-iPr(2)-C6H3)}(2)] (5). Complex 2 was "base-free" monomer, in which the tetradentate beta-diiminato ligand was meridional with the two alkyl species locating above and below it, generating tetragonal bipyramidal core about the metal center. Complex 3 was asymmetric monomer containing trigonal bipyramidal core with trans-arrangement of the amido ligands. In contrast, the two cis-located alkyl species in complex 4 were endo and exo towards the 0,N,N tridentate anilido-imido moiety. The bis(amido) complex 5 was confirmed to be structural analogue to 4 albeit without THF coordination. All these yttrium complexes are highly active initiators for the ring-opening polymerization Of L-LA at room temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reaction of 3-(2-pyridylmethyl)indenyl lithium (1) with LnI(2)(THF)(2) (Ln = Sm, Yb) in THF produced the divalent organolanthanides (C5H4NCH2C9H6)(2)Ln(II)(THF) (Ln = Sm (2), Yb (3)) in high yield. 1 reacts with LnCl(3) (Ln = Nd, Sm, Yb) in THF to give bis(3-(2-pyridylmethyl)indenyl) lanthanide chlorides (C5H4NCH2C9H6)(2)Ln(III)Cl (Ln = Nd (4), Sm (5)) and the unexpected divalent lanthanides 3 (Ln = Yb). Complexes 2-5 show more stable in air than the non-functionalized analogues. X-ray structural analyses of 2-4 were performed. 2 and 3 belong to the high symmetrical space group (Cmcm) with the same structures, they are THF-solvated 9-coordinate monomeric in the solid state, while 4 is an unsolvated 9-coordinate monomer with a trans arrangement of both the side-arms and indenyl rings in the solid state. Additionally, 2 and 3 show moderate polymerization activities for F-caprolactone (CL).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reactions of anhydrous LnCl(3) (Ln = Nd, Gd, Dy, Er, Yb) with 2 equiv of LiCp' in THF afford the lanthanocene complexes Of CP'(2)Ln(mu-Cl)(2)Li(THF)(2) (CP' = eta(5)-t-BuC5H4, Ln = Nd (1), Gd (2), Dy (3), Er (4), Yb (5); Cp'= 1,3-eta(5)-t-Bu2C5H3, Ln = Nd (6), Gd (7), Dy (8), Er (9), Yb (10)). The molecular structures of 7 and 8 were characterized by X-ray crystallographic analysis. In these complexes, two Cp' ring centroids and two it-bridging chloride atoms around the lanthanide atoms form a distorted tetrahedron. The insertion of elemental chalcogen E (E = S, Se) into Li-C bonds of dilithium o-carborane in THF solution afforded dimers of dilithium. dichalcogenolate carboranes, [(THF)(3)LiE2C2B10H10Li(THF)](2) (E = S (12a), Se (12b)), which were confirmed by a crystal structure analysis. Reactions Of Cp'(2)Ln(mu-Cl)(2)Li(THF)(2) (1-10) with 12a or 12b gave dinuclear complexes of the formula [Li(THF)(4)](2)[Cp'(2)LnE(2)C(2)B(10)H(10)](2) (Cp'= eta(5)-t-BuC5H4, E = S, Ln = Nd (13a), Gd (14a), Dy (15a), Er (16a), Yb (17a); E = Se, Ln = Nd (13b), Gd (14b), Dy (15b), Er (16b), Yb (17b); Cp'= 1,3-eta(5)-t-Bu2C5H3 E = S, Ln = Nd (18a), Gd (19a), Dy (20a), Er (21a), Yb (22a); E = Se, Ln = Nd (18b), Gd (19b), Dy (20b), Er (21b), Yb (22b)). According to the X-ray structure analyses, the dianions of 13a and 13b contain two o-carborane dichalcogenolate bridges, and each CP'2Ln fragment is attached to one terminal and two bridging chalcogen ligands. The central Ln(2)E(2) four-membered ring is not planar, and the direct metal-metal interaction is absent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NdCl3 reacted with C6H5CH2C5H4Na in the ratio 1:1 at -78 degrees C giving [C6H5 CH2C5H4NdCl2 . nTHF], which then was reacted with C8H8K2/THF to yield the title complex [(C8H8)(3)(C6H5CH2C5H4)Nd2K(THF)(3)] (C6H5CH2C5H4 = benzylcyclopentadienyl). The crystal structure of the Nd complex was determined by X-ray diffraction and revealed that the benzyl group is coordinated to the potassium atom to form a new type of trinuclear complex [(eta(8)-C8H8)Nd(mu(2)-eta(8)-C8H8K(THF) (eta(3)-C6H5CH2-mu(2)-eta(5)-C5H4)Nd (THF)(2)(eta(8)-C8H8)]. Copyright (C) 1996 Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

双(2-甲氧乙基环戊二烯基>氯化钇和镱,在THF中,室温与硼氢化钠发生置换反应,生成双(2-甲氧乙基环戊二烯基)硼氢化钇(1)和镱(2),产率分别为70和59%.它们都经红外光谱,质谱,~1HNMR和元素分析鉴定.将l和2在THF-已烷中重结晶,得到适用于X射线衍射分析的单晶.1的空间群为Pna2_1,晶胞参数:a=1.2390(3),b=1.1339(2),c=1.1919(2)nm,晶胞体积,1.6745(6)nm~3.D_o=1.39g·om~3,z=4,R=0.061;2的空间群为Pna2_1,晶胞参数:a=1.2399(6),b=1.1371(5),c=1.1897(2)nm,晶胞体积,1.6773(1)nm~3,D_c=1.72g·cm~(-3),z=4,R=0.038,1与2都是含有两个内配位键(Ln—O)的双齿型的单体结构.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

本论文合成了旋光性甲基丙烯酸(上艹下孟)酯(MnMA)、并分别用阴离子聚合,基团转移聚合(GTP),自由基聚合及原子转移自由基聚合(ATRP)方法对其进行了聚合研究,考查了不同聚合方法对其聚合能力、聚合物微观结构及旋光性的影响,主要结论如下:1.在MnMA的阴离子聚合中,分别加人(+)DDB、(-)Sp, TMEDA等配体后,聚合能力明显增强。2.(-)一MAMA的阴离子聚合所得聚合物的比旋光值随其分子量的增加略有增加;手性与非手性引发体系及不同聚合方法对聚甲基丙烯酸莹醋的比旋光值影响均较小。2.不同聚合方法对聚甲基丙烯酸盏酷的立构规整性的影响程度不同,且所得聚合物的全同含量均较低。4.以甲基丙烯酸三苯基甲酷(TrMA)作为活性预聚物可以诱导MnMA、乙烯基三苯基磷(VTPP)等大位阻单体聚合,实现螺旋诱导不对称聚合。5.采用ATRP及反向ATRP对(-)-MnMA进行了聚合研究,结果表明:(1)(-)MriMA的非均相ATRP研究表明,不同引发剂及配体对其聚合影响程度不同,2一澳丙酸乙醋(2-EBP)/CuCl/2,2'-联毗陡(bipy)/THF体系的引发效率最高,体系所得聚合物的分子量分布最窄,可控性最好。(2)(-)MnMA的两均相ATRP体系2-BP/CuCl/(-)-Sp(or dHbpy)ffHF所得聚合物分子量随转化率的变化基本呈直线关系,分子量分布均控制在1.2以下。(3)对(-)MnMA反向ATRP研究表明,AIBN/CuC12/bipy(or (-)-Sp)fFBF体系的动力学曲线呈一级线性关系,分子量随转化率的变化基本呈直线增加,可控性较好。(4) ATRP及反向ATRP体系中所得聚合物的比旋光值绝对值随分子量的增加略有减小。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

稀土有机碳σ-键配合物和氢化物不仅可以催化许多有机反应,而且还可以催化极性单体与非极性单体的聚合.作为稀土有机碳σ-键配合物与氢化物的前体,双配稀土氯化物(C<,9>H<,7>)<,2>LnCl一直是稀土有机化学中研究的热点.1.合成了一系列双配(四氢糠基茚基)稀土氯化物(C<,4>H<,7>OCH<,2>C<,9>H<,6>)<,2>LnCl(Ln=La,Pr,Nd,Sm,Gd,Dy,Y,Ho,Er,Yb,Lu).除了Pr以外,所有化合物的晶体结构都被X-射线衍射表征.2.合成并用X-衍射表征了3-(2-吡啶甲基)茚基锂(C<,5>H<,4>NCH<,2>C<,9>H<,6>)Li(THF)<,2>的晶体结构.3.合成了双配[3-(2-吡啶甲基)茚基]稀土氯化物(C<,5>H<,4>NCH<,2>C<,9>H<,6>)<,2>LnCl(Ln=Sm,Nd),并得到了配合物Nd的晶体结构.4.用二碘化钐(镱)与3-(2-吡啶甲基)茚基锂反应合成了二价双配[3-(2-吡啶甲基)茚基]稀土配合物(C<,5>H<,4>NCH<,2>C<,9>H<,6>)<,2>Ln(Ⅱ)(THF)(Ln=Sm,Yb).5.在用无水氯化稀土YbCl<,3>与3-(2-吡啶甲基)茚基锂反应合成双配[3-(2-吡啶甲基)茚基]稀土氯化物时,由于发生了还原反应,得到了二价双配[3-(2-吡啶甲基)茚基]镱化物(C<,5>H<,4>NCH<,2>C<,9>H<,6>)<,2>Yb(Ⅱ)(THF).6.二价双配[3-(2-吡啶甲基)茚基]稀土配合物(C<,5>H<,4>NCH<,2>C<,9>H<,6>)<,2>Ln(Ⅱ)(THF)(Ln=Sm,Yb)对已内酯具有很好的催化聚合活性.聚合反应可控,并具有活性聚合的特征.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

本文研究了在无水氯化稀土催化下2-甲基呋喃和丙烯醛、呋喃和丙烯醛、呋喃和丙烯酸甲酯、2-甲基呋喃和丙烯酸甲酯,呋喃和丙烯酸乙酯以及丁二烯和顺丁烯二酸酐的Diels-Aldel反应,结果表明:(1)无水LnCl_3 (Cn=Nd, Eu, Gd, Yb)对2-甲苯呋喃和丙烯醛的反应有明显的催化作用,反应在温和条件下(25℃,常压无溶剂)顺利进行,不同LnCl_3催化活性按稀土元素原子序数递增而增加。其中,仅用0.008mol% YbCl_3就可催化反应达到85%的产品收率。本反应是连串反应,产物在LnCl_3催化下聚合成低聚物,适当降低催化剂用量是控制产物的聚合从而提高产品收率。与AlCl_3相比,YbCl_3的活性比AlCl_3高。降低反应温度也可以相对控制副反应。当丙烯醛和2-甲基呋喃的用量摩尔比为2:1时,反应能得到最好结果。用THF作溶剂时反应产率比甲苯作溶时要低得多。(2)丙烯醛和呋喃在常温下经CnCl_3催化可得到反应物摩尔比为1:1和2:1两种加成物,主要是2:1加成物。1:1加成物在LnCl_3存在下易聚合,在加热下易聚合。室温下易分角为原料。本反应在-40℃以CH_2Cl_2为溶剂YbCl_3催人时,只得到1:1加成物但收率不高.(3)LnCL_3对呋喃和丙烯酸甲酯的反应有良好的催化活性,当温度为40℃,YbCl_3 10mol%, 反应60小时可得到N/X = 17/27的产物2-carbomethoxy-7-oxabicyclo [2. 2. 1]nept-5-ene, 收率为80%。温度的降低有利地内型产物的生成,反应时间,催化剂用量对反应产物收率和立体选择性都有影响。(4)2-甲基呋喃和丙烯酸甲酯在YbCl_3催化下比(3)的反应更易进行。0℃时,6mol% YbCl_3反应67小时,收率可达88%,产物N/x达3.0。温度的降低有利于内型产物的生成,而反应时间和催化剂用量不影响产物立体选择性。(5)呋喃和丙烯酸乙酯 在10mol% YbCl_3催化下室温反应48小时,得到N/X=Y_(1.47)的产物44%。温度的降低有利于内型产物的生成,反应时间相对处长有利于产品收率但不影响产品的立体选择性。此外,我们分离得到丙烯酸乙酯和YbCl_3的络合物,证明反应首先是通过YbCl_3和羟基氧的络合,然后再和双烯加成。(6)不同LnCl_3对丁二烯和顺丁烯二酸酐的反应具有不同催化活性,其活性按稀土元素原子序数递增而增加,即:LaCb < PrCl_3 , SmCl_3 < EuCl_3 < GdCl_3 < YbCl_3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogenolysis of mono(cyclopentadienyl)-ligated rare-earth-metal bis(alkyl) complexes Cp'Ln-(CH2SiMe3)2(THF) (Ln = Y (1a), Dy (1b), Lu (1c); Cp' = C5Me4SiMe3) with PhSiH3 afforded the mixed hydride/alkyl complexes [Cp'Ln(mu-H)(CH2SiMe3)(THF)](2) (Ln = Y (2a), Dy (2b), Lu (2c)). The overall structure of complexes 2a-c is a C-2-symmetric dimer containing a planar symmetric Ln(2)H(2) core at the center of the molecule. Deprotonation of ArOH (Ar = C6H2-Bu-t(2)-2,6-Me-4) by the metal alkyl group of 2a-c led to formation of the mixed hydride/aryloxide derivatives [Cp'Ln(mu-H)(OAr)](2) (Ln = Y (3a), Dy (3b), Lu (3c)), which adopt the dimeric structure through hydride bridges with trans-accommodated terminal aryloxide groups.