330 resultados para neutron emission width


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on a detailed investigation on the temperature-dependent behavior of photoluminescence from molecular beam epitaxy (MBE)-grown chlorine-doped ZnSe epilayers. The overwhelming neutral donor bound exciton ((ClX)-X-0) emission at 2.797 eV near the band edge with a full-width at half-maximum (FWHM) of similar to 13 meV reveals the high crystalline quality of the samples used. In our experiments, the quick quenching of the (ClX)-X-0 line above 200 K is mainly due to the presence of a nonradiative center with a thermal activation energy of similar to 90 meV, The same activation energy and similar quenching tendency of the (ClX)-X-0 line and the I-3 line at 2.713 eV indicate that they originate from the same physical mechanism. We demonstrate for the first time that the dominant decrease of the integrated intensity of the I, line is due to the thermal excitation of the "I-3 center"-bound excitons to its free exciton states, leaving the "I-3 centers" as efficient nonradiative centers. The optical performance of ZnSe materials is expected to be greatly improved if the density of the "I-3 center" can be controlled. The decrease in the luminescence intensity at moderately low temperature (30-200 K) of the (ClX)-X-0 line is due to the thermal activation of neutral-donor-bound excitons ((ClX)-X-0) to free excitons. (C) 2000 Published by Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semiconductor microlasers with an equilateral triangle resonator (ETR) and an output waveguide are proposed and analyzed by the finite-difference time-domain technique and the Pade approximation. The numerical results show that microlasers with an output waveguide still have a high-quality factor (Q factor) and are suitable to realize directional emission. For the ETR with a 0.46-mum-width opening in one of the vertices connected to the output waveguide, we have the Q factor of 1.5x10(3) and 2.5x10(2) for the TM fundamental mode at the wavelength of 1.55 mum, as the side length of the ETR is 5 and 3 mum. The simulated intensity distributions are presented for the fundamental mode in the ETR with a side length of 3 mum and an opening of 0.23 mum. (C) 2000 American Institute of Physics. [S0003-6951(00)01749-6].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-assembled InAs nanostructures on (0 0 1)InP substrate have been grown by molecular beam epitaxy (MBE) and evaluated by transmission electron microscopy (TEM) and photoluminescence (PL). It is found that the morphologies of InAs nanostructures depend strongly on the underlying alloy. Through introducing a lattice-matched underlying InAlGaAs layer on InAlAs buffer layer, the InAs quantum dots (QDs) can be much more uniform in size and great improvement in PL properties can be attained at the same time. In particular, 1.55 mu m luminescence at room temperature (RT) can be realized in InAs QDs deposited on (0 0 1)InP substrate with underlying InAlGaAs layer. (C) 2000 Published by Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional GaN pyramids have been successfully obtained on submicron dot-patterned (0001) sapphire substrates by using the selective metalorganic vapor phase epitaxy (MOVPE) technique. The dot-pattern is a hexagon arranged with a 0.5-mu m width and 1.0-mu m spacing. The GaN structure comprises a hexagonal pyramid covered with six {1 (1) over bar 01} pyramidal facets on the side of a hexagonal pyramid having a (0001) facet on the top. Cathodoluminescence (CL) measurement was carried our. on the hexagonal pyramid at low temperature. Two distinct spectra were observed to occur at about 359 and 329 nm. The higher energy is thought to be related to GaN dot, and the lower one is due to GaN dot band edge emission. The intensities of the two spectra were investigated as a function of temperature in the range of 135-150 K. (C) 2000 Published by Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoluminescence measurements have been performed on cubic GaN films with carrier concentration as low as 3 x 10(13) cm(-3). From the temperature and excitation intensity dependence, the emission lines at 3.268, 3.150 and 3.081 eV were assigned to the excitonic, donor-acceptor pair, and free-to-acceptor transitions, respectively Additionally, we observed two additional emission lines at 2.926 and 2.821 eV, and suggested that they belong to donor-acceptor pair transitions. Furthermore, from the temperature dependence of integral intensities, we confirmed that three donor-acceptor pair transitions (3.150, 2.926, and 2.821 eV) are from a common shallow donor to three different accepters. The excitonic emission at 3.216 eV has a full-width-at-half-maximum value of 41 meV at room temperature, which indicates a good optical quality of our sample.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, In0.5Ga0.5As quantum dots are fabricated on GaAs (100) and (n11)A/B (n = 3, 5) substrates by molecular beam epitaxy. Atomic force microscopy shows that the quantum dots on each oriented substrate are different in size, shape and distribution. In addition, photoluminescence spectra from these quantum dots are different in emission peak position, line width and integrated intensity. Auger electron spectra demonstrate that In concentration is larger near the surface than inside quantum dots, suggesting the occurrence of surface segregation effect during the growth of InGaAs dots. The surface segregation effect is found to be related to substrate orientation. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel AC driving configuration is proposed for biased semiconductor superlattices, in which the THz driving is provided by an intense bichromatic cw laser in the visible light range. The frequency difference between two components of the laser is resonant with the Bloch oscillation. Thus, multi-photon processes mediated by the conduction (valence) band states lead to dynamical delocalization and localization of the valence (conduction) electrons, and to the formation and collapse of quasi-minibands. Thus, driven Bloch oscillators are predicted to generate persistent THz emission and harmonics of the dipole field, which are tolerant of the exciton and the relaxation effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Postgrowth rapid thermal annealing was performed on InGaAs/GaAs quantum dots grown by molecular beam epitaxy. The blue shift of the emission peak and the narrowing of the luminescence line width are observed at lower annealing temperature. However, when the annealing temperature is increased to 850 degrees C, the emission line width becomes larger. The TEM image of this sample shows that the surface becomes rough, and some large clusters are formed, which is due to the interdiffusion of In, Ga atoms at the InGaAs/GaAs interface and to the strain relaxation. The material is found to degrade dramatically when the annealing temperature is further increased to 900 degrees C, while emission from quantum dots can still be detected, along with the appearance of the emission from excited state. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A InGaAsP/InP self-aligned, native oxidized buried heterostructure (BH) distributed feedback (DFB) laser is proposed. It is as easy to process as the ridge waveguide DFB laser and has superior performance. The current aperture can be easily controlled without selective regrowth. The laser exhibits a low threshold of 5.0 mA with 36 dB side mode suppression ratio at the emission wavelength of 1.562 mu m. It emits in a single lobe with full width at half maximum angles of 33.6 degrees and 42.6 degrees for the lateral and vertical fields, respectively. Its beam is more circular than that of the as-grown BH laser because the lower refractive index of oxide compared to the as-grown layer and results in a larger lateral optical confinement. Its characteristic temperature (T-0) is 50 K at room temperature but increases in value at the higher temperature range. (C) 2000 American Institute of Physics. [S0003-6951(00)00812-3].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the growth of GaN buffers by metalorganic chemical vapor deposition (MOCVD) on GaAs (100) substrates. Atomic force microscope (AFM) and reflection high-energy electron diffraction (RHEED) were employed to study the dependence of the nucleation on the growth temperature, growth rate, annealing effect, and growth time. A two-step growth sequence must be used to optimize and control the nucleation and the subsequent growth independently. The size and distribution of islands and the thickness of buffer layers have a crucial role on the quality of GaN layers. Based on the experimental results, a model was given to interpret the formation of hexagonal-phase GaN in the cubic-phase GaN layers. Using an optimum buffer layer, the strong near-band emission of cubic GaN with full-width at half maximum (FWHM) value as small as 5.6 nm was observed at room temperature. The background carrier concentration was estimated to be in the range of 10(13) similar to 10(14) cm(-3).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a novel superluminescent diode (SLD) with a quantum dot (QD) active layer, which should give a wider output spectrum than a conventional quantum well SLD. The device makes use of inhomogeneous broadness of gain spectrum resulting from size inhomogeneity of self-assembled quantum dots grown by Stranski-Krastanow mode. Taking a design made out in the InxGa1-xAs/GaAs system for example, the spectrum characteristics of the device are simulated realistically, 100-200 nm full width of half maximum of output spectrum can be obtained. The dependence of the output spectrum on In composition, size distribution and injection current of the dots active region is also elaborated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, InGaAs quantum dots with an adjusting InGaAlAs layer underneath are grown on (n 1 1)A/B (n = 2-5) and the reference (1 0 0) substrates by molecular beam epitaxy. Small and dense InGaAs quantum dots are formed on (1 0 0) and (n 1 1)B substrates. A comparative study by atomic force microscopy shows that the alignment and uniformity for InGaAs quantum dots are greatly improved on(5 1 1)B but deteriorated on (3 1 1)B surface, demonstrating the great influence of the buried InGaAlAs layer. There is an increase in photoluminescence intensity and a decrease in the full-width at half-maximum when n varies from 2 to 5. Quantum dots formed on (3 1 1)A and (5 1 1)A surfaces are large and random in distribution, and no emission from these dots can be detected. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radiation-induced electrical changes in both space charge region (SCR) of Si detectors and bulk material (BM) have been studied for samples of diodes and resistors made on Si materials with different initial resistivities. The space charge sign inversion fluence (Phi(inv)) has been found to increase linearly with the initial doping concentration (the reciprocal of the resistivity), which gives improved radiation hardness to Si detectors fabricated from low resistivity material. The resistivity of the BM, on the other hand, has been observed to increase with the neutron fluence and approach a saturation value in the order of hundreds k Omega cm at high fluences, independent of the initial resistivity and material type. However, the fluence (Phi(s)), at which the resistivity saturation starts, increases with the initial doping concentrations and the value of Phi(s) is in the same order of that of Phi(inv) for all resistivity samples. Improved radiation hardness can also be achieved by the manipulation of the space charge concentration (N-eff) in SCR, by selective filling and/or freezing at cryogenic temperatures the charge state of radiation-induced traps, to values that will give a much smaller full depletion voltage. Models have been proposed to explain the experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wavelength tuning of exciton emissions has been achieved simply by inserting an InAs submonolayer at the centre of GaAs quantum wells during molecular beam epitaxy growth. Photoluminescence measurements show that the emission energy can be effectively tuned from the quantum-well-determined energy down to less than the band gap of GaAs, depending on the well width as well as the InAs layer thickness. Using the effective-mass approximation, the tuning effect can be well predicted theoretically The results reported here may provide an alternative way to tune the wavelength in optoelectronic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Test strip detectors of 125 mu m, 500 mu m, and 1 mm pitches with about 1 cm(2) areas have been made on medium-resistivity silicon wafers (1.3 and 2.7 k Ohm cm). Detectors of 500 mu m pitch have been tested for charge collection and position precision before and after neutron irradiation (up to 2 x 10(14) n/cm(2)) using 820 and 1030 nm laser lights with different beam-spot sizes. It has been found that for a bias of 250 V a strip detector made of 1.3 k Ohm cm (300 mu m thick) can be fully depleted before and after an irradiation of 2 x 10(14) n/cm(2). For a 500 mu m pitch strip detector made of 2.7 k Ohm cm tested with an 1030 nm laser light with 200 mu m spot size, the position reconstruction error is about 14 mu m before irradiation, and 17 mu m after about 1.7 x 10(13) n/cm(2) irradiation. We demonstrated in this work that medium resistivity silicon strip detectors can work just as well as the traditional high-resistivity ones, but with higher radiation tolerance. We also tested charge sharing and position reconstruction using a 1030 nm wavelength (300 mu m absorption length in Si at RT) laser, which provides a simulation of MIP particles in high-physics experiments in terms of charge collection and position reconstruction, (C) 1999 Elsevier Science B.V. All rights reserved.