287 resultados para Ion beam analysis
Resumo:
Two important issues in electron beam physical vapor deposition (EBPVD) are addressed. The first issue is a validity condition of the classical cosine law widely used in the engineering context. This requires a breakdown criterion of the free molecular assumption on which the cosine law is established. Using the analytical solution of free molecular effusion flow, the number of collisions (N-c) for a particle moving from an evaporative source to a substrate is estimated that is proven inversely proportional to the local Knudsen number at the evaporation surface. N-c = 1 is adopted as a breakdown criterion of the free molecular assumption, and it is verified by experimental data and DSMC results. The second issue is how to realize the uniform distributions of thickness and component over a large-area thin film. Our analysis shows that at relatively low evaporation rates the goal is easy achieved through arranging the evaporative source positions properly and rotating the substrate.
Resumo:
A new strain gradient theory which is based on energy nonlocal model is proposed in this paper, and the theory is applied to investigate the size effects in thin metallic wire torsion, ultra-thin beam bending and micro-indentation of polycrystalline copper. First, an energy nonlocal model is suggested. Second, based on the model, a new strain gradient theory is derived. Third, the new theory is applied to analyze three representative experiments.
Resumo:
Particle-in-cell simulations are performed to study the acceleration of ions due to the interaction of a relativistic femtosecond laser pulse with a narrow thin target. The numerical results show that ions can be accelerated in a cascade by two electrostatic fields if the width of the target is smaller than the laser beam waist. The first field is formed in front of the target by the central part of the laser beam, which pushes the electron layer inward. The major part of the abaxial laser energy propagates along the edges to the rear side of the target and pulls out some hot electrons from the edges of the target, which form another electrostatic field at the rear side of the target. The ions from the front surface are accelerated stepwise by these two electrostatic fields to high energies at the rear side of the target. The simulations show that the largest ion energy gain for a narrow target is about four times higher than in the case of a wide target. (c) 2006 American Institute of Physics.
Resumo:
The interaction of a linearly polarized intense laser pulse with an ultrathin nanometer plasma layer is investigated to understand the physics of the ion acceleration. It is shown by the computer simulation that the plasma response to the laser pulse comprises two steps. First, due to the vxB effect, electrons in the plasma layer are extracted and periodic ultrashort relativistic electron bunches are generated every half of a laser period. Second, strongly asymmetric Coulomb explosion of ions in the foil occurs due to the strong electrostatic charge separation, once the foil is burnt through. Followed by the laser accelerated electron bunch, the ion expansion in the forward direction occurs along the laser beam that is much stronger as compared to the backward direction. (c) 2008 American Institute of Physics.
Resumo:
A Hohlraum-like configuration is proposed for realizing a simple compact source for neutrons. A laser pulse enters a tiny thin-shelled hollow-sphere target through a small opening and is self-consistently trapped in the cavity. The electrons in the inner shell-wall region are expelled by the light pressure. The resulting space-charge field compresses the local ions into a thin layer that becomes strongly heated. An inward expansion of ions into the shell cavity then occurs, resulting in the formation at the cavity center of a hot spot of ions at high density and temperature, similar to that in inertial electrostatic confinement.
Resumo:
The photorefractive planar lens for converting a vertical incident plane wave to a lateral-spread spherical wave and vice versa, is suggested. Using the two-beam coupled-wave theory, the coupled wave equations are derived and their half-analytical solutions are also given in terms of an infinite series. The diffraction properties (beam profiles, diffraction efficiency) of the local volume grating in the lens are presented. And the focusing property of the lens is discussed and compared with that of an ideal convergent spherical wave. It is demonstrated that the suggested photorefractive planar lens shows a good focusing effect. (c) 2004 Elsevier GmbH. All rights reserved.
Resumo:
A new type of wave-front analysis method for the collimation testing of laser beams is proposed. A concept of wave-front height is defined, and, on this basis, the wave-front analysis method of circular aperture sampling is introduced. The wave-front height of the tested noncollimated wave can be estimated from the distance between two identical fiducial diffraction planes of the sampled wave, and then the divergence is determined. The design is detailed, and the experiment is demonstrated. The principle and experiment results of the method are presented. Owing to the simplicity of the method and its low cost, it is a promising method for checking the collimation of a laser beam with a large divergence. © 2005 Optical Society of America.
Resumo:
We described a highly efficient polarizing beam splitter (PBS) of a deep-etched binary-phase fused-silica grating, where TE- and TM-polarized waves are mainly diffracted in the -1st and 0th orders, respectively. Tb achieve a high extinction ratio and diffraction efficiency, the grating depth and period are optimized by using rigorous coupled-wave analysis, which can be well explained based on the modal method with effective indices of the modes for TE/TM polarization. Holographic recording technology and inductively coupled plasma etching are employed to fabricate the fused-silica PBS grating. Experimental results of diffraction efficiencies approaching 80% for a TE-polarized wave in the -1st order and more than 85% for a TM-polarized wave in the 0th order were obtained at a wavelength of 1550 nm. Because of its compact structure and simple fabrication process, which is suitable for mass reproduction, a deep-etched fused-silica grating as a PBS should be a useful device for practical applications. (C) 2007 Optical Society of America
Resumo:
The usual beam splitter of multilayer-coated film with a wideband spectrum is not easy to achieve. We describe the realization of a wideband transmission two-port beam splitter based on a binary fused-silica phase grating. To achieve high efficiency and equality in the diffracted 0th and -1st orders, the grating profile parameters are optimized using rigorous coupled-wave analysis at a wavelength of 1550 nm. Holographic recording and the inductively coupled plasma dry etching technique are used to fabricate the fused-silica beam splitter grating. The measured efficiency of (45% x 2) = 90% diffracted into the both orders can be obtained with the fabricated grating under Littrow mounting. The physical mechanism of such a wideband two-port beam splitter grating can be well explained by the modal method based on two-beam interference of the modes excited by the incident wave. With the high damage threshold, low coefficient of thermal expansion, and wideband high efficiency, the presented beam splitter etched in fused silica should be a useful optical element for a variety of practical applications. (C) 2008 Optical Society of America.
Resumo:
We investigated the use of a deep-etched fused-silica grating with triangular-shaped grooves as a highly efficient polarizing beam splitter (PBS). A triangular-groove PBS grating is designed at a wavelength of 1550 nm to be used in optical communication. When it is illuminated in Littrow mounting, the transmitted TE- and TM-polarized waves are mainly diffracted in the minus-first and zeroth orders, respectively. The design condition is based on the average differences of the grating mode indices, which is verified by using rigorous coupled-wave analysis. The designed PBS grating is highly efficient over the C+L band range for both TE and TM polarizations (> 97.68 %). It is shown that such a triangular-groove PBS grating can exhibit a higher diffraction efficiency, a larger extinction ratio, and less reflection loss than the binary-phase fused-silica PBS grating. (C) 2008 Optical Society of America.
Resumo:
A deep-etched polarization-independent binary fused-silica phase grating as a three-port beam splitter is designed and manufactured. The grating profile is optimized by use of the rigorous coupled-wave analysis around the 785 nm wavelength. The physical explanation of the grating is illustrated by the modal method. Simple analytical expressions of the diffraction efficiencies and modal guidelines for the three-port beam splitter grating design are given. Holographic recording technology and inductively coupled plasma etching are used to manufacture the fused-silica grating. Experimental results are in good agreement with the theoretical values. (c) 2008 Optical Society of America.
Resumo:
Beam splitting of low-contrast rectangular gratings under second Bragg angle incidence is studied. The grating period is between lambda and 2 lambda. The diffraction behaviors of the three transmitted propagating orders are illustrated by analyzing the first three propagating grating modes. From a simplified modal approach, the design conditions of gratings as a high-efficiency element with most of its energy concentrated in the -2nd transmitted order (similar to 90%) and of gratings as a 1 x 2 beam splitter with a total efficiency over 90% are derived. The grating parameters for achieving exactly the splitting pattern by use of rigorous coupled-wave analysis verified the design method. A 1 x 3 beam splitter is also demonstrated. Moreover, the polarization-dependent diffraction behaviors are investigated, which suggest the possibility of designing polarization-selective elements under such a configuration. The proposed concept of using the second Bragg angle should be helpful for developing new grating-based devices. (C) 2008 Optical Society of America.
Resumo:
We theoretically investigated the design of a metal-mirror-based reflecting polarizing beam splitter (RPBS). The metal mirror is a silver slab, which is embedded in the substrate of a rectangular silica transmission grating. By using a modal analysis and rigorous coupled-wave analysis, an RPBS grating is designed for operation at 1550 nm. When it is illuminated in Littrow mounting, the transverse electric (TE) and transverse magnetic (TM) waves will be mainly reflected in the minus-first and zeroth orders, respectively. Moreover, a wideband RPBS grating is obtained by adopting the simulated annealing algorithm. The RPBS gratings exhibit high diffraction efficiencies (similar to 95%) and high extinction ratios over a certain angle and wavelength range, especially for the minus-first-order reflection. This kind of RPBS should be useful in practical optical applications.
Resumo:
A deep binary silicon grating as high-extinction-ratio reflective polarizing beam splitter (PBS) at the wavelength of 1550 nm is presented. The design is based on the phenomenon of total internal reflection (TIR) by using the rigorous coupled wave analysis (RCWA). The extinction ratio of the rectangular PBS grating can reach 2.5×105 with the optimum grating period of 397 nm and groove depth of 1.092 μm. The effciencies of TM-polarized wave in the 0th order and TE-polarized wave in the −1st order can both reach unity at the Littrow angle. Holographic recording technology and inductively coupled plasma (ICP) etching could be used to fabricate the silicon PBS grating.
Resumo:
A relatively simple scheme for disk-type photopolymer high-density holographic storage based on angular and spatial multiplexing is described. The effects of the optical setup on the recording capacity and density are studied. Calculations and analysis show that this scheme is more effective than a scheme based on the spatioangular multiplexing for disk-type photopolymer high-density holographic storage, which has a limited medium thickness. Also an optimal beam recording angle exists to achieve maximum recording capacity and density. (C) 2002 Society of Photo-Optical Instrumentation Engineers.