304 resultados para Droplet etching
Resumo:
The fabrication and performance evaluation of a miniature twin-fuel-cell on silicon wafers are presented in this paper. The miniature twin-fuel-cell was fabricated in series using two membrane-electrode-assemblies sandwiched between two silicon substrates in which electric current, reactant, and product flow. The novel structure of the miniature twin-fuel-cell is that the electricity interconnect from the cathode of one cell to the anode of another cell is made on the same plane. The interconnect was fabricated by sputtering a layer of copper over a layer of gold on the top of the silicon wafer. Silicon dioxide was deposited on the silicon wafer adjacent to the copper layer to prevent short-circuiting between the twin cells. The feed holes and channels in the silicon wafers were prepared by anisotropic silicon etching from the back and front of the wafer with silicon dioxide acting as intrinsic etch-stop layer. Operating on dry H-2/O-2 at 25 degreesC and atmospheric pressure, the measured peak power density was 190.4 mW/cm(2) at 270 mA/cm(2) for the miniature twin-fuel-cell using a Nafion 112 membrane. Based on the polarization curves of the twin-fuel-cell and the two single cells, the interconnect resistance between the twin cells was calculated to be in the range from 0.0113 Omega (at 10 mA/cm(2)) to 0.0150 Omega (at 300 mA/cm(2)), which is relatively low. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
The Cu-Zr amorphous alloy was studied as an electrocatalyst towards the electrochemical hydrogenation of nitrobenzene. The electrocatalyst was activated by chemical etching in HF solution. Resulted changes in the morphology, chemical composition and crystalline structure of the electrocatalyst surface were characterised by scanning electron microscopy, X-ray diffraction and Auger electron spectroscopy. The electrocatalytic properties of the Cu-Zr amorphous alloy were assessed by voltammetric measurements. Due to the formation and aggregation of Zr residue modified Cu nanocrystals on the surface caused by the selective dissolution of Zr components in the chemical etching, the activated amorphous alloy is an effective electrocatalyst for the electrochemical reduction reaction of nitrobenzene with aniline as the main product. The positive shift of the peak potential and accompanying increase in the value of peak current in voltammograms with increasing Cu content and decreasing Zr content of the alloy surface in the chemical etching are indicative of improved electrocatalytic activity. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A methodological survey of microsphere formation and microencapsulation techniques based on solvent extraction/evaporation techniques is presented. Thus, basic features of solvent extraction and solvent evaporation processes, including droplet formation, droplet/particle stabilization, and solvent removal, are outlined. Preparation of a wide range of microspherical and microcapsular products based on biodegradable polyesters, polysaccharides, and nonbiodegradable polymers are discussed. Dependence of microcapsule characteristics on manufacturing parameters, as well as performance evaluation of microspherical and microcapsular products, are also briefly covered.
Resumo:
By controlling the surface effects during droplet evaporation of imogolite solutions, imogolite nanotubes were dispersed individually and directly observed by transmission electron microscopy (TEM), and the structure evolution of imogolite nanotubes in the synthetic process was investigated. It was found that the number of imogolite nanotubes continuously increased with time in the whole reaction. The average length grew slowly over time after a remarkable increase in the initial 24 h, and the length distribution experienced a similar variation with the polydispersity index always below 2. No appreciable changes in tube diameters were detected under TEM observation.
Resumo:
A new and facile method to prepare large-area silver-coated silicon nanowire arrays for surface-enhanced Raman spectroscopy (SERS)-based sensing is introduced. High-quality silicon nanowire arrays are prepared by a chemical etching method and used as a template for the generation of SERS-active silver-coated silicon nanowire arrays. The morphologies of the silicon nanowire arrays and the type of silver-plating solution are two key factors determining the magnitude of SERS signal enhancement and the sensitivity of detection; they are investigated in detail for the purpose of optimization.
Resumo:
The micrographs of epoxy resin on single carbon fiber at room temperature and the temperature dependent contact angle on single carbon fiber were investigated using field environmental scanning electron microscope (FESEM). The results showed that the contact angle decreases significantly with increasing temperature. The advantage of this experimental approach was that can directly reflected the wettability of epoxy resin to fiber. But the experimental process was complicated, and there were many influence factors. The reason is that the wettability of epoxy resin on parallel sheet can be improved at higher temperatures. The spreading procedures for the epoxy resin droplet on carbon fiber cluster were observed by means of drop shape analysis system ( DSA) in parallel and perpendicular directions of the aligned fibers.
Resumo:
Perfectly hydrophobic (PHO) coatings consisting of silicone nanofibers have been obtained via a solution process using methyltrialkoxysilanes as precursors. On the basis of thermal gravimetry and differential thermal analysis (TG-DTA) and Fourier transform infrared spectroscopy (FTIR) results, the formula of the nanofibers was tentatively given and a possible growth mechanism of the nanofibers was proposed. Because of the low affinity between the coatings and the small water droplet, when using these coatings as substrate for collecting water vapor, the harvesting efficiency could be enhanced as compared with those from bare glass substrate for more than 50% under 25 degrees C and 60-90% relative humidity. By removing the surface methyl group by heat treatment or ultraviolet (UV) irradiation, the as-prepared perfectly hydrophobic surface can be converted into a superhydrophilic surface.
Resumo:
We introduced a new nanoreactor system consisting of nanochannel-filled Fe3O4 core and SiO2 shell. Different morphologies of Fe3O4@SiO2 Core-shell nanostructures could be obtained through simple HCI etching of the magnetic cores. The outer silica shells were permeable and the Fe3O4 cores were accessible to the reactants. Therefore, the present nanoreactor system was applied to catalyze the reduction of H2O2, and it showed outstanding catalytic activity compared with bare Fe3O4 or Fe3O4@SiO2 core-shell nanoparticles.
Resumo:
Well-shaped Y2O3:Eu hollow microspheres have been successfully prepared on a large scale via a urea-based homogeneous precipitation technique in the presence of colloidal carbon spheres as hard templates followed by a subsequent heat treatment process. XRD results demonstrate that all the diffraction peaks of the samples can be well indexed to the pure cubic phase Of Y2O3. TEM and SEM images indicate that the shell of the uniform hollow spheres, whose diameters are about 250 nm, is composed of many uniform nanoparticles with diameters of about 20 nm, basically consistent with the estimation of XRD results. Furthermore, the main process in this method was carried out in aqueous condition, without the use of organic solvents or etching agents. The as-prepared hollow Y2O3:Eu microspheres show a strong red emission corresponding to the D-5(0)-F-7(2) transition of the Eu3+ ions under ultraviolet or low voltage excitation, which might find potential applications in fields such as light phosphor powders, advanced flat panel displays, field emission display devices, and biological labeling.
Resumo:
A novel bilayer photoresist insulator is applied in flexible vanadyl-phthalocyanine (VOPc) organic thin-film transistors (OTFTs). The micron-size patterns of this photoresisit insulator can be directly defined only by photolithography without the etching process. Furthermore, these OTFTs exhibit high field-effect mobility (about 0.8 cm(2)/Vs) and current on/off ratio (about 10(6)). In particular, they show rather low hysteresis (< 1 V). The results demonstrate that this bilayer photoresist insulator can be applied in large-area electronics and in the facilitation of patterning insulators.
Resumo:
Breakup process of polyamide 6 (PA6) in polypropylene (PP) matrix under shear flow was online studied by using a Linkam CSS 450 stage equipped with optical microscopy. Both tip streaming and fracture breakup modes of PA6 droplets were observed in this study. It was reported that the droplet would break up by tip streaming model when the radio of the droplet phase viscosity to the matrix phase viscosity (n(r) = n(d)/n(m)) is smaller than 0.1 (Taylor, Proc R Soc London A 1934, 146, 501; Grace, Chem Eng Commun 1982, 14, 225; Bartok and Mason, J Colloid Sci 1959, 14, 13; Rumscheidt and Mason, J Colloid Sci 1961, 16, 238; de Bruijn, Chem Eng Sci 1993, 48, 277). However, the tip streaming model was observed even when the viscosity ratio was much greater than 0.1 (n(r) = 1.9). In this study for the tip streaming mode, small droplets were ruptured from the tip of the mother droplet. On the other hand, the mother droplet was broken into two or more daughter droplets with one or several satellite droplets between them for the fracture mode. It was found that PA6 droplet was much elongated at first, and then broke up via tip streaming or fracture to form daughter droplets or small satellite droplets with the shape of fiber or ellipse.
Resumo:
The approach of water droplets self-running horizontally and uphill without any other forces was proposed by patterning the shape-gradient hydrophilic material (i.e., mica) to the hydrophobic matrix (i.e., wax or low-density polyethylene (LDPE)). The shape-gradient composite surface is the best one to drive water droplet self-running both at the high velocity and the maximal distance among four different geometrical mica/wax composite surfaces. The driving force for the water droplets self-running includes: (1) the great difference in wettability of surface materials, (2) the low contact angle hysteresis of surface materials, and (3) the space limitation of the shape-gradient transportation area. Furthermore, the average velocity and the maximal distance of the self-running were mainly determined by the gradient angle (alpha), the droplet volume, and the difference of the contact angle hysteresis. Theoretical analysis is in agreement with the experimental results.
Resumo:
A new setup to couple capillary electrophoresis (CE) with electrochemiluminescence (ECL) detection is described in which the electrical connection of CE is achieved through a porous section at a distance of 7 mm from the CE capillary outlet. Because the porous capillary wall allowed the CE current to pass through and there was no electric field gradient beyond that section, the influence of CE high-voltage field on the ECL procedure was eliminated. The porous section formed by etching the capillary with hydrofluoric acid after only one side of the circumference of 2-3 mm of polyimide coating of the capillary was removed, while keeping the polyimide coating on the other part to protect the capillary from HF etching makes the capillary joint much more robust since only a part of the circumference of it is etched. A standard three-electrode configuration was used in experiments with Pt wire as a counter electrode, Ag/AgCl as a reference electrode, and a 300-mum diameter Pt disk as a working electrode. Compared with CE-ECL conventional decoupler designs, the present setup with a porous joint has no added dead volume created.
Resumo:
Fractionated crystallization behavior of dispersed PA6 phase in PP/PA6 blends compatibilized with PP-g-MAH was investigated by scanning electron microscopy (SEM), differential scanning calorimeter (DSC), polarized light microscopy (PLM), and wide-angle X-ray diffraction (WAXD) in this work. The lack of usual active heterogeneities in the dispersed droplet was the key factor for the fractionated crystallization of PA6. The crystals formed with less efficient nuclei might contain more defects in the crystal structures than those crystallized with the usual active nuclei. The lower the crystallization temperature, the lesser the perfection of the crystals and the lower crystallinity would be. The fractionated crystallization of PP droplets encapsulated by PA6 domains was also observed. The effect of existing PP-g-MAH-g-PA6 copolymer located at the interface on the fractionated crystallization could not be detected in this work.
Resumo:
Ultrathin multilayers films consisting of Keggin anion [PMo12O40](3-) and diazo resin were first prepared by the electrostatic layer-by-layer self-assembly method. This film material could be stabilized by the photoinduced interaction between Keggin anion and diazo resin. IR spectra and X-ray photoelectron spectra revealed the occurrence of the partial transformation from ionic bond to covalent bond between layers of the film under irradiation by UV light. Such transformation increases the stability of the film, which was demonstrated by AFM images and the etching experiments with organic solvent.