288 resultados para [NO3]-
Resumo:
近几年随全球变暖和大气污染的加剧,有机气溶胶对气候和环境的影响引起了广泛的关注。其中低分子有机酸由于易溶于水,易挥发等特性可以改变大气颗粒物吸湿性、粒径分布以及形成云凝结核活性,进而改变全球的水循环和辐射平衡,而日益成为大气化学研究的重要内容。低分子有机酸极强的水溶性使雨水成为研究大气有机酸的理想载体。有机酸进入降水后是降雨的酸度重要贡献者,尤其是边远地区有机酸对降水酸度贡献高达65%。传统的大气降水研究主要侧重无机离子,认为硫酸和硝酸是降水酸度的主要贡献者,而忽略对降水中有机组分的研究。以贵阳和重庆等为代表的西南地区是我国酸雨污染的重灾区,该地区是典型喀斯特地形地貌区,生态环境具有极端的脆弱性和破坏后难以恢复性,在该地区研究酸雨形成和影响因素具有特殊的重要意义。本研究选取典型酸雨区(贵阳市)和人为污染较少黔东南州黎平县尚重镇为研究对象,2006-4~2007-4期间,收集大气降水样品221个,测定了大气降水中7种有机酸和主要阴、阳离子。对有机酸对酸雨的贡献及大气降水中无机离子和有机酸的浓度分布、变化规律、主要来源和沉降通量进行研究。主要得到了以下几点认识: 1、建立了离子色谱同时测定雨水中有机酸和无机酸分析条件。以戴安AS11-HC为分离柱、AG11-HC为保护柱,RFC-30淋洗液发生器在线产生KOH淋洗液,主要梯度条件为1mmol ( 0~6min) 、1mmol~30mmol (6~31min)。淋洗液流速1.5ml/min,柱温39℃。此条件下主要有机酸线性相关系数0.9992~0.9999,RSD%≤5%,精密度RSD%≤5%(丙酮酸RSD%=13.8%),样品的加标回收率在80~120%之间,满足分析测试要求。 2、 贵阳市降水样品pH值的分布范围为2.49~6.92,年均值为3.28。雨水酸化率为73.8%,其中pH值小于4.0雨水占样品总数42%。尚重镇降水样品pH值的分布范围为5.01~6.50,年均值为5.83,降水的酸雨率为18.4%。贵阳市酸雨污染仍十分严重,重酸雨尤为突出(pH<4.0),尚重镇酸雨污染较轻。 贵阳市降水样品电导率在10~1028μS/cm之间,平均值为248μS/cm,降水电导率高反映了贵阳市大气污染显著。尚重镇降水样品电导率在2.2~52.8μS/cm之间,平均值为18.1μS/cm,降水电导率低反映大气污染较轻。 3、贵阳市大气降水主要无机离子是SO42-、NO3-、H+、Ca2+、NH4+,雨量加权平均浓度分别为154.1μmol/L、33.9μmol/L、520.7μmol/L、226.4μmol/L和158.3μmol/L。采样期间,贵阳市H+年沉降通量为496.9mmol/m2/yr,夏季H+沉降占全年沉降总量的78%,贵阳市SO42-年沉降通量达到151.5mmol/m2/yr,有195.3mmol/m2/yr的Ca2+沉降。NH4+、Mg2+、Na+、K+、NO3-、Cl-的沉降通量分别为138.7mmol/m2/yr、50.9mmol/m2/yr、26.8mmol/m2/yr、11.4mmol/m2/yr、32.3mmol/m2/yr和12.6mmol/m2/yr。 尚重镇贵阳市大气降水主要无机离子是SO42-、NO3-、Ca2+、NH4+,其雨量加权平均浓度分别为43.1μmol/L、19.3μmol/L、33.0μmol/L和49.5μmol/L。采样期间,尚重镇[H+]年沉降通量为0.5mmol/m2/yr。SO42-、Ca2+和NH4+是发生沉降主要离子,分别为13.9mmol/m2/yr、10.6mmol/m2/yr和15.9mmol/m2/yr。Mg2+、Na+、K+、NO3-、Cl-的沉降通量分别为2.1mmol/m2/yr、5.9mmol/m2/yr、3.0mmol/m2/yr、6.2mmol/m2/yr和3.2mmol/m2/yr。 4、在贵阳市、尚重镇大气降水中共检测出7种低分子有机酸,分别是甲酸、乙酸、草酸、丙酮酸、丙酸、甲烷磺酸和乳酸。其中甲酸、乙酸和草酸是三种主要的有机酸。贵阳市甲酸、乙酸和草酸年平均浓度分别为14.24μmol/L、9.35μmol/L和2.79μmol/L,而在尚重镇它们浓度分别为4.95μmol/L、1.35μmol/L和2.31μmol/L。根据酸平衡常数计算法,贵阳市有机酸对自由酸贡献分别为:甲酸-7.9%,乙酸-4.7%,草酸-6.1%,三种主要有机酸贡献了18.7%的自由酸;尚重镇有机酸对自由酸贡献分别为:甲酸-25.1%,乙酸-7.5%,草酸-25.5%,有机酸对自由酸贡献率为58.1%。贵阳市有机酸占阴离子比值1.7~19.2%,平均值为6.6%。尚重镇有机酸对阴离子的贡献为0.5~92.2%,平均值为13.2%。有机酸对酸雨形成和大气降水化学起不可忽视的重要作用。 采样期间,贵阳市甲酸、乙酸和草酸的湿沉降通量分别为13.5mmol/m2/year 、8.9mmol/m2/year和2.6mmol/m2/year,甲酸和乙酸干沉降通量分别为26.7mmol/m2/year 和14.5mmol/m2/year,干沉降和湿沉降是贵阳市有机酸的主要沉降形式。尚重镇甲酸、乙酸和草酸的湿沉降通量分别为1.59mmol/m2/year 、0.43mmol/m2/year和0.04mmol/m2/year,甲酸和乙酸干沉降通量分别为0.1mmol/m2/year 和0.17mmol/m2/year,湿沉降是尚重镇有机酸的主要沉降形式。 5、尚重镇大气降水有机酸生长季节浓度高于非生长季节浓度,说明生长植物或土壤的释放可能是尚重镇大气有机酸的主要来源。贵阳市大气降水中有机酸非生长季节浓度高于生长季节浓度,主要原因是贵阳市降雨主要发生在夏季,降雨量的增加加大了对大气中微量气体的淋滤作用,降低了大气中有机酸浓度,同时夏季降雨pH值较低也不利于雨水对大气有机酸的溶解吸收。气象条件是影响有机酸浓度的重要因素。贵阳市大气有机酸主要在降雨初期进入降水并被清除的,降雨初期(1~2h)对大气有机酸清除占总清除的50~80%。随降雨的进行雨水中有机酸浓度逐渐降低,降雨后期略有升高,大降雨量对雨水中有机酸浓度起稀释的作用。尚重镇降雨量对有机酸浓度影响作用不明显,说明有机酸浓度不受雨量稀释作用控制,在降雨过程可能存在有机酸的液相来源。不同来源气团对贵阳市雨水中有机酸浓度影响不同,其中以北面方向气团降水中有机酸最高,与我国内陆大气污染较重有关。而源于海洋方向的东南气团雨水中有机酸浓度最低。 6、利用统计分析方法(相关性分析、主成分分析和聚类分析)和有机酸来源判别方法结合不同的来源释放有机酸通量得出:尚重镇大气中有机酸主要来源植物或者土壤直接或间接释放,而贵阳市有机酸来源相对复杂,其中植物的直接释放和机动车辆尾气排放不是大气有机酸的主要来源,生物质燃烧直接释放以及植物和人类活动向大气排放大量的不饱和有机物大气氧化可能是大气有机酸的重要来源。 7、从大气降水的电导率和pH值对比来看,贵阳市大气污染严重,雨水酸化率高,尚重镇大气污染较轻,雨水酸化率低。贵阳市大气降水中水溶性离子浓度是尚重镇的2~5倍左右,尚重镇地区酸沉降只有贵阳市0.1%,酸沉降对尚重镇不会造成太大影响。有机酸占贵阳市大气降水自由酸的19%,而尚重镇有超过1/2的自由酸是来源于低分子有机酸,是边远地区大气降水酸度的主要贡献者。来源分析表明尚重镇有机酸主要为生物源,贵阳市有机酸为人为源和生物源并重。 8、 传统的大气降水化学研究主要侧重于无机离子的研究,而忽略了对大气降水中有机组分的研究。本文第一次较全面、系统的研究了西南典型酸雨污染区大气降水化学组成以及降水酸度的来源,指出有机酸组分是西南地区大气降水化学的重要组成部分,对酸雨形成有不可忽视的影响。
Resumo:
本研究根据贵阳市区域内不同土地利用方式,选择了自然土壤、农业土壤和城市土壤为主要研究对象。对表层土壤实行多样点的统计分析、以及典型剖面有机碳迁移过程分析,同时结合同位素地球化学示踪原理,探讨了贵阳市区域内土地利用方式变化对土壤有机碳的影响,以及不同土地利用方式间土壤有机碳的来源和降解过程的差异。主要结论如下: (1) 自然土壤转化为农业土壤后,表层(0~10cm) SOC有较为明显的降低趋势。其中,相对于自然土壤(黄壤) 表层SOC(平均值)而言,玉米地、水田、果园下降了40%左右,菜地下降了15%左右。然而,不同菜地土壤间耕种强度存在较大差异,其SOC变异程度高于其它几类农业土壤(CV=57.07%)。与之相反,农业土壤表层DOC(18.86~48.20mg•L-1)接近或超过自然土壤(10.74~36.30 mg•L-1),且ƒDOC占SOC的比例明显大于自然土壤。其中,玉米地DOC最高(平均值:48.20mg•L-1),菜地次之(平均值:30.00mg•L-1),果园第三(平均值:29.87mg•L-1),水田最低(平均值:18.86mg•L-1),但水田由于干湿交替的影响,DOC的变异程度最大(CV=128.57%)。据此推断,在相同气候条件下,自然土壤转化为农业土壤后,由于表层DOC数量和比例的增加,提高了SOC的迁移性,进而加速了碳素在土壤中的迁移转化进程。 (2) 自然土壤转化为农业土壤后,剖面内部(>10cm)多数层次SOC相对于黄壤和黄色石灰土有明显的增加趋势。且通过对不同类型农业土壤人为干扰强度的调查表明:人为干扰强度越强,剖面中一定深度内SOC增加幅度越大。即:离城市较近的菜地2增长最为突出,果园其次,水田和玉米地相当。离城市较远的菜地1由于受人为干扰层次较浅,且出现了犁底层,剖面内SOC的含量水平与黄色石灰土相当。 (3) 原始土壤经搬运重组后形成城市公路绿化带土壤,表层SOC和DOC变幅较宽、离散程度较大,且没有随时间或植被类型等因素的变化而呈现明显的变化趋势。其中,SOC变异程度依次为新成公路绿化带2(CV=58.0%)、老成公路绿化带(CV=55.5%)、新成公路绿化带1(CV=34.1%)。DOC变异程度依次为新成公路绿化带1(CV=93.8%)、新成公路绿化带2(CV=85.7%)、老成公路绿化带(CV=78.0%)。 (4) 在自然土壤、农业土壤和城市绿化带土壤表层中,DOC与SOC、N、C/N、NO3-、NH4-,以及粘粒含量等的相关性均未达到显著水平。另据方差分析显示:果园、水田、菜地和玉米地表层土壤间DOC、SOC含量均无显著差异,说明农业土壤利用方式不是决定土壤表层SOC和DOC含量的绝对因素;新成公路绿化带1,2和老成公路绿化带表层土壤间DOC、SOC含量均无显著差异,说明植被类别和形成时间不是决定土壤表层SOC和DOC含量的绝对因素。 (5) 自然土壤中,枯枝落叶转化为表层(0~5cm)土壤有机质后,δ13CSOC值升高了1~4‰。通过不同碳源间δ13Corg相互关系的判断,在具备枯枝落叶覆盖的表层土壤中,DOC主要来源于枯枝落叶;而在土壤剖面内,随土壤剖面深度的增加,来自于土壤腐殖类物质的DOC占土壤DOC总量的比例呈增加趋势。在黄壤和黄色石灰土中(>5cm土层),土壤剖面中大多数层次DOC比SOC更富13C。 (6) 大多数农业土壤有机碳δ13C值显示其有机肥源中存在C4-C源。且农业土壤中受碳源多样性的影响,菜地、果园、水田和玉米地表层土壤中δ13CSOC与δ13CDOC的相关性均未达到显著水平。其次,除玉米地土壤剖面外,其它供试农业土壤剖面大多数层次δ13CDOC值比δ13CSOC偏负,说明菜地、果园、水田土壤DOC主要为外源的加入。 (7) C3植被转化为C4植被(林-农生态系统转化)后,玉米地剖面中SOC有2.55%~20.80%源于C4-C,随剖面层次的加深有降低趋势,但表现为“之”字形反复;DOC中C4-C的比例在剖面0~40cm处较为相近(25.94%~34.54%),40cm以下则急剧下降(3.18%~15.65%)。说明玉米地剖面 DOC主要来源于土壤腐殖类物质的转化。与林-农生态系统转变过程中的变化趋势相反,洼地农业土壤退耕弃荒一段时间(林-农-林生态系统转化)后,土壤剖面内C4-C占SOC的比例随土壤层次的加深逐渐增加,变化范围在5.77~26.76%。 (8) 在C3植被转向C4植被(林-农生态系统转化)后,玉米地δ13CSOC值与C4-C、C3-C相关系数(r)分别为0.372和-0.102,δ13CDOC值与C4-C、C3-C相关系数分别为0.131和-0.339,其相关性均未达到显著水平。而再从C4植被转回C3植被后,土壤δ13CSOC与C3-C之间呈显著相关性(r=0.88,n=7),说明退耕弃荒后新加入的C3-C对土壤δ13CSOC值影响较大。其SOC的主要来源于洼地周边坡面土壤的侵蚀堆积物和新生草本植被残体。结合当前SOC降解过程的研究成果,本研究认为:洼地土壤退耕弃荒后一段时间里,土壤SOC可能处于累积大于损失状态。这有利于土壤性状向良性方向发展。 (9) 根据同位素值的相互关系和有机碳的来源调查,判断公路绿化带土壤中C4-C为原始土壤所带来。大气颗粒物和雨水中的DOC是表层土壤DOC的主要来源。公路绿化带土壤剖面中,随着时间的增加,土壤腐殖类物质与DOC的相互转化逐渐加强。 上述结论可为人类认识城市区域(特别是有强烈酸性沉降历史的喀斯特城市区域)土地利用方式改变对土壤碳循环的影响,以及不同土地利用方式间土壤有机碳迁移转化过程提供科学依据,也可为正确评估城市区域土壤与其他圈层间碳循环的源、汇关系提供基础资料。
Resumo:
大气中温室气体不断增加引起的气候变暖,对全球气候、生态环境和人类活动等一系列问题产生重大影响。土壤作为CO2、CH4、N2O 的主要的生物来源,对其源、汇的探测一直是全球变化研究的重点前沿课题。本论文以亚热带喀斯特地区的非农业土壤为研究对象,对黔中不同植被条件(退耕荒草地、灌丛、马尾松林、混交林、阔叶林)和不同类型(黄壤、石灰土)的土壤CO2、CH4 和N2O 的释放及其在土壤剖面中的浓度分布进行观测,并同步测定土壤温度、土壤水分和土壤无机氮等环境因子,在此基础上分析和研究了不同生态系统土壤温室气体的释放通量及其季节变化规律,土壤剖面中温室气体的时空变化规律以及主要环境因子的影响。主要结论如下: 1. 黔中非农业土壤是大气CO2 和N2O 的释放源,CH4 的吸收汇。土壤CO2、N2O 和CH4 年均释放量分别为13558.3 CO2-Ckg•hm-2•a-1、2.3 N2O-Nkg•hm-2•a-1和7.4kg CH4-Ckg•hm-2•a-1。与国内外其它生态系统相比,本研究中土壤N2O 和CO2 的年均释放量具有较明显的地带性特征,对大气CH4 的吸收则处于国内外对各生态系统观测范围的高值部分,表明贵州碳酸盐地区的非农业土壤是一个重要的大气CH4 汇。 2. 土壤类型和植被类型影响土壤CO2、CH4 和N2O 的释放通量。植被条件对土壤温室气体释放通量的影响因土壤类型的不同而存在差异。土壤类型对温室气体释放通量的影响,由于主要是土壤理化性质的差异所导致,因此在各植被条件下表现出较为一致的规律。 主要的影响因素有气候条件、人为耕作干扰的影响、森林的枯枝落叶层、植被的覆盖度、土壤质地、有机质含量和pH 等。 3. 黔中非农业土壤CO2 、CH4 和N2O 平均综合增温潜势为 50620.0CO2kg•hm-2•a-1。纯粹从土壤释放的温室气体来看,随着退耕还林工程的进一步开展,植被的演替将使贵州省未来非农业土壤释放的温室气体的GWP增大。另一方面,基岩裸露严重的荒漠化石山地区土壤释放的温室气体对区域土壤GWP 的贡献高于其它非农业土壤,表明在石漠化进程中,由于植被覆盖度的降低和土地的退化也将会加剧区域土壤的增温潜势。 4. 土壤CO2、CH4和N2O的释放通量具有季节变化特征。对于CO2, 黄壤CO2释放通量的季节变化与温度相同,春夏季节高于秋冬季节,而石灰土则差异较大。对于N2O,退耕荒草地、灌丛土壤N2O释放通量的季节变化较阔叶林、马尾松林地则季节变化明显。对于CH4,交换通量的季节特征主要表现为两个吸收峰(12月~2月;7月~9月)。 5. 土壤CO2和N2O剖面浓度空间分布规律相同,与CH4相反。总体上,CO2和N2O剖面浓度的空间分布规律有两种:一种是随着土壤深度的增加,剖面浓度先增大而后明显减小或者趋于稳定,另一种是随着土壤深度的增加而明显增大;CH4剖面浓度的空间分布在大部分情况下与CO2和N2O相反,因此表现为随着土壤深度的增加,剖面浓度先减小后增大或者趋于稳定。浅层土壤温室气体的剖面浓度易受到大气浓度混合的影响,随着深度的增加,土壤中温室气体的浓度主要视自身土壤条件而定。 6. 环境因子影响土壤温室气体的释放通量,也影响温室气体剖面浓度的时空分布。对于CO2,释放通量主要与土壤温度和无机氮(NO3-和NH4+)正相关;剖面浓度则主要受到土壤温度和NO3-含量的影响。对于N2O,释放通量主要受到0~10cm土壤水分的控制;剖面浓度的影响因素则为土壤温度、水分和NH4+含量。对于CH4,土壤通量在温度<10℃时,主要受到温度的影响。当温度>10℃时,表层土壤水分屏蔽了温度的影响,成为主要的影响因素;剖面浓度主要受到土壤温度和NO3-含量的影响。 7. 土壤温室气体释放通量的季节变化和剖面浓度的时空分布耦合相关。整体上,黔中非农业土壤CO2释放量和CH4吸收量的季节变化规律极显著反相关,而与N2O不同。土壤中温室气体剖面浓度时空分布的相关性, CO2和N2O为耦合正相关,CO2和CH4为负相关,N2O和CH4也为负相关,这种耦合关系可能是由于作为N2O产生底物的无机氮对土壤CH4吸收和产生的毒害作用的影响。土壤温室气体剖面浓度和交换通量都相关的现象说明,土壤中碳、氮的生物球化学循环紧密相连。
Resumo:
正确认识降水中的化学组分是评价酸雨和大气环境质量的重要途径,降水中低分子有机酸的研究是认识C、H、O等元素生物地球化学循环和酸雨成因的重要内容。贵州省遵义市作为我国酸雨高发地区,是降水化学组成尤其是低分子有机酸地球化学循环研究的典型区域。我们在遵义市进行了为期一年(2006年5月~2007年4月)的降水采集(共76个样品),对pH值、电导率和主要的阴离子(包括有机和无机)、阳离子进行了测定,并进行了分析和讨论。 (1) pH和电导率的雨量加权平均值分别为4.11(范围:2.30~ 6.04)和62.10 μs•cm-1 (范围:6.60 ~ 1630.00 μs•cm-1),酸雨频率高达93.2%,pH存在着显著的季节变化,其中冬季pH值最低,表明遵义市酸雨污染较为严重,冬季为最。 (2) 遵义市监测期间离子浓度的大小顺序为SO42-> Ca2+> H+> NH4+> NO3-> Cl-> F->HCOO-> Mg2+> K+> CH3COO-> Na+> (COO)22-> PO43-> NO2-,其中SO42-、Ca2+、H+、NH4+、NO3-是最主要离子,浓度分别为148.15 μmol•L-1、81.89 μmol•L-1、77.74 μmol•L-1、43.80 μmol•L-1和31.50μmol•L-1,它们分别占离子总量的31.97%、17.67%、16.78%、9.45%和6.54%;遵义市大气降水中主要的致酸物质是SO42-和NO3-,主要的缓冲物质是Ca2+和NH4+,大气污染类型属硫酸钙型。相对酸度和中和因子结果表明降水中仅有77%的降水酸度被碱性物质(以Ca2+和NH4+为主)中和;因子分析中H+、NO3-、nss-SO42-(非海源性硫酸根)、NH4+归为一组,再次表明SO42-和NO3-对降水酸度的重要贡献。富集系数和源的贡献分析表明,SO42-和NO3-主要来自人为活动的贡献,SO42-来源主要包括工业、民用的燃煤燃烧释放的SO2,NO3-主要是遵义市电厂和其它工厂向大气中排放的NOx的化学转化而成。Ca2+主要来自于遵义市的土壤及水泥厂等的排放;Mg2+主要来自陆源输入,部分来自海水的贡献。氮肥生产、大面积农田化肥的使用以及生物排放源很可能是该地区降水中NH4+的主要污染源。值得注意的是,作为海盐性离子的Cl-,在遵义市降水中重要的部分还是人为活动,主要是遵义工厂(如碱厂和钛厂)向大气中排放的HCl和Cl2转化而成。无机离子浓度的季节变化表明,对于遵义市,需要逐步改变能源结构尤其是冬季工业、居民燃煤的使用,才能有效地改善遵义市当前的环境污染。 (3) 遵义市降水中含量较高的常见有机酸是[HCOO-]T、[CH3COO-]T和[(COO)22-]T,它们的雨量加权平均值各为9.29 μmol•L -1、6.47 μmol•L-1和5.06 μmol•L-1;遵义市区降水中有机酸总浓度为22.28 μmol•L-1,占阴离子总量的9.39 %;遵义市降水中四季的有机酸浓度由高到低分别为:春季>冬季>秋季>夏季。以上结果表明,遵义市的有机酸是降水中的重要组成部分,其浓度存在明显的季节性变化。在一次降雨事件中,有机酸的浓度一般随降雨时间的延长而降低,但在降雨中后期有时会出现上升的现象,表明有机酸主要来自云下淋滤作用,少数情况下来自大气远距离的传输。 (4) 相关性分析发现甲酸和乙酸具有强烈的正相关(r= 0.86),表明甲酸和乙酸具有共同的来源。有机酸与降水中的主要无机离子NO3-、nss-SO42-、K+、Na+、Ca2+等存在着中度相关,表明有机酸的来源与人为活动有着重要的关系。应用气液平衡的原理,提出了降水中甲酸、乙酸比值(F/A)aq的有机酸来源判定方法。发现遵义降水中的有机酸春季和冬季主要来自人类活动的释放,其中春季主要来自遵义市南郊的工业污染,由南方水汽(占春季总量的54%)将其污染物传输至遵义市中心城区,冬季主要是大量燃煤的燃烧释放;夏季和秋季则主要来自植物的释放,其中秋季中的部分有机酸也受到华中和华东地区(其气团占秋季总量的45%)的远距离影响。而遵义市区的山间盆地地形、高湿度、高静风率和低风速、以尘埃为主的大气污染物和有机酸的短生命周期(几小时~几天)为有机酸来源于当地创造了有利条件。 (5) 根据热力学平衡计算新方法,发现遵义市pH≤5的降水中甲酸和乙酸对自由酸度的贡献分别为14.79% (范围:0.42~91.14%)、3.66% (范围:0.02~31.55%)。对比显示,遵义市的有机酸贡献量低于边远地区,主要由于遵义市降水的低pH值和高无机酸度所致。在春、夏、秋、冬季节,降水中的有机酸对自由酸度的平均贡献值分别为31.95%、26.16%、8.02%、11.17%,表明有机酸酸度有着明显的季节性差异,春季有机酸的高贡献量主要受降水中的有机酸高含量、低水温和高pH值的共同作用,夏季受高pH值的影响,而秋季和冬季的低贡献量主要受降水的低pH值所控制。 (6) 在遵义市的沉降通量中,无机离子的湿沉降通量占所有离子湿沉降总量的94%,并存在明显的季节性变化。SO42-、Ca2+、H+、NH4+、NO3-为最主要的贡献者,分别为90.1、49.8、47.3、26.0和19.2 mmol•m-2•yr-1。对比显示,SO42-、Ca2+、H+的沉降量均属于我国的高值区,而NO3-的沉降量属于我国中值区,NH4+的沉降量属我国低值水平。营养元素总无机氮TIN(TIN= NH4+ -N+ NO3- -N+ NO2- -N)的湿沉降总量为45.7 mmol•m-2•yr-1,其中NH4+和NO3-分别占TIN的57.0%和41.9%,遵义地区高TIN值当地氮肥的施用量和工业NOx的释放量密不可分;营养元素P的沉降量为1.97 mmol•m-2•yr-1,由于P的来源较少,促使P的湿沉降通量较低。有机酸占湿沉降总量的6%,其四季的湿沉降量顺序由高到低依次为:春>秋>冬>夏,这是有机离子的浓度和四季的降雨量共同作用的结果。根据气液平衡理论可知,挥发性有机酸(HCOO-、CH3COO-和CH3CH2COO-)的干沉降量占总沉降量的47.2%,表明遵义市有机酸沉降方式包括干湿沉降两种。因此在研究遵义市的污染物尤其是有机酸类对生态系统和城市建设的影响时,有必要同时收集气样和水样。
Resumo:
氮循环是水生生态系统中重要的营养循环,对它的研究能够为水环境评价以及解决日益严重的湖泊富营养化问题中的氮治理提供理论依据。水体中的有机质分为颗粒态有机质(POM)和溶解态有机质(DOM)两部分,它们在水体中与无机氮相互转化、相互作用,共同控制着整个水生生态系统内部的氮循环过程。稳定氮同位素技术作为有效的地球化学工具能够被用于追溯水生生态系统中的物质来源以及指示相关的生物地球化学循环作用。因此对有机质稳定氮同位素比值的测定有利用帮助我们了解它在水生生态系统中所扮演的角色,尤其是得到有机质参与的地球化学循环作用的直接证据,从而进一步完善对水生生态系统内部整个氮循环过程的研究。 本研究首先从根本上解决了限制溶解有机氮(dissolved organic nitrogen,DON)稳定氮同位素比值应用的测定技术上的难题。然后选择贵州高原湖泊―红枫湖和百花湖作为研究对象,测定了2003~2004年两湖水体中颗粒态有机氮同位素比值(δ15NPON)的季节及剖面变化,探讨了两湖季节性变化存在差异的原因以及红枫湖纵向水体剖面上δ15NPON的变化规律及影响因素。最后,在前人对红枫湖研究的基础上重点选择了2006~2007年间湖泊热分层不同时期具有代表性的几个月份进行了剖面采样。测定了不同月份纵向水体剖面上的DON、PON与NO3-三种氮形态的含量、δ15N值以及其它水化学参数,揭示了水体内部氮循环过程中的相关生物地球化学作用。同时,结合冬季湖泊枯水期外源输入河流以及湖泊水体横向剖面上的DON、PON与NO3-三种氮形态的含量及其δ15N值的变化,追溯了湖泊水体中各种氮形态的来源以及外源输入河流对湖泊水体的贡献。本研究得到以下几点结论: 1. δ15NPON值的季节性变化可以用于评价水生生态系统的营养状况,指示外源人为活动产生的工业废水和生活污水的影响。对2003~2004年间红枫湖和百花湖两湖表层湖泊水体中PON的δ15N季节性变化研究表明,红枫湖表层颗粒态有机质δ15NPON的变化范围为+3.7~+14.9‰;百花湖颗粒态有机质δ15NPON的变化范围为+1.3~+8.7‰。其季节性变化趋势不同。红枫湖表现为冬季(2月)和夏末秋初(9月)出现高值;冬季高值的出现主要受外源输入的工业废水中富含15N的无机氮源和有机颗粒的影响。百花湖在冬季(2月)出现最低值,夏末秋初(9月)出现高值;冬季最低值的出现则可能归功于生活污水中富含14N的有机颗粒的贡献。 2. 首次从整体角度得到了δ15NDON值变化区间的信息。红枫湖2006~2007年不同采样月份水体内部的δ15NDON测定结果显示,δ15NDON的变化范围为+1.0~+12.3‰,它与δ15NNO3-的变化范围:5.9~+22‰和δ15NPON变化范围:+2.8~+16.8‰接近。同时,研究还发现在浮游植物生长季节,表层水体不同形态氮的同位素比值普遍存在下述规律:δ15NNO3->δ15NPON>δ15NDON。原因是此时浮游植物是PON的主要组成部分,且吸收利用NO3-的过程是δ15NPON变化的主要控制因素,浮游植物通过分泌细胞外液等方式分解产生了的富含14N的DON,从而使得三种形态的氮同位素具有一定的继承关系。 3. 三种氮形态δ15N值的季节性变化趋势能够反映其来源的差异。纵向剖面水体中,2007年1月的δ15NNO3-最大,湖泊受外源河流携带的高δ15N及高含量NO3-的影响。2006年4月和2007年3月的δ15NNO3-较小,水体内部发生的强烈的硝化作用产生了大量富含14N的NO3-,是湖泊水体NO3-的重要内源。δ15NDON值表现为:除2007年3月表现异常外(出现异常高值),浮游植物生长季节(2006年4月和2006年7月)的 δ15NDON普遍小于其余月份,且纵向水体剖面上变化幅度均不太大,这与浮游植物生长季节DON主要来源于浮游植物分泌等作用产生的富含14N的组分有关。δ15NPON值表现为冬季(2007年1月)具有最高值,受外源输入河流中富含15N的有机颗粒的影响。 4. PON降解方式的不同可能引起生成的δ15NDON存在差异。PON在有氧条件下发生硝化降解时,由于富含14N的组分优先被释放,因此生成的DON组分的δ15N值较小,如2006年4月10m以上水体和2006年7月10m以上水体;而当PON在厌氧条件下发生反硝化降解时,富含15N的组分则优先被释放,从而使得生成的DON其δ15N较大,如2006年4月18m以下水体和2006年7月10m以下水体。 5. 纵向水体剖面上δ15NPON的显著变化来源于其组成的变化,并且不论是硝化细菌还是反硝化细菌,当它们作为PON的主要组分时均会造成δ15NPON的减小,如2006年7月和2007年3月中下部水体。 6. 三种氮形态同位素比值的结合能够更加有效地示踪有机质来源的变化。如2007年1月纵向水体剖面,整个水体剖面氮含量无明显变化,而氮同位素比值则有显著变化。20m处δ15NPON、δ15NNO3-和δ15NDON均在此发生转折,显示20m可能是外源输入与内部水体的分界层。此时,横向水体剖面上,采样点4处NO3-显著增加,而δ15NNO3-保持不变;δ15NDON显著减小。说明采样点4处可能有新的氮源出现。初步估计是由于先前网箱养鱼的积累影响还有高含量的NO3-,低δ15N值的DON输出。 以上的研究结果充分证实了有机质的稳定氮同位素比值的变化能够更加直接地用于追溯有机质的来源以及追踪有机质在湖泊水体中参与的生物地球化学循环作用。
Resumo:
流域水环境是流域一切生态过程的基础,也是保障水资源发挥各项服务功能的必要条件。随着社会经济的发展,河流的自然性质和作用过程受到流域内不断加强的人文活动的强烈冲击。其中,水利大坝对河流的拦截调蓄可以算得上是对河流及流域生态系统的影响最为显著和重要。在河流上修筑水坝后,水库成为流域(河流)景观格局中重要的组成部分。目前对河流“水库效应”的研究主要集中在由水坝拦截引起的河流水文情势改变、泥砂淤积、地貌侵蚀以及鱼类迴游、水坝建设对生源要素的拦截、水库温室气体等方面,且大多数研究只针对单个水库或几个位于不同流域的独立水库,而对同一流域梯级开发形成的河流—水库体系中水环境演化的过程缺乏深入的了解,对单一水库中碳循环的生物地球化学作用研究不够。 碳是生命的核心元素,所有其它重要元素的生物循环过程都与碳密切相关。水体内生物活动与水库水环境变化之间的反馈、水体生态系统与营养元素载荷的相互作用关系以及响应过程是研究水环境变化的基础。其中,水体内部的元素循环、能量流动、CO2动力学与营养状况的关系等都是控制水环境变化的关键过程,碳作为这一切活动的核心元素,对它的研究对认识水环境变化、水生态过程、元素循环以及它们的相互作用具有重要的指示意义。 因此,本研究中选取中国西南喀斯特山区典型的梯级水库作为研究对象,以碳循环为研究主线,于2006年4月、7月、10月和2007年1月对乌江中上游干流已进行梯级开发的六个水库的入库水体、库区水体及出库水体进行一个水文年的采样,对溶解无机碳(DIC)、溶解有机碳(DOC)、颗粒有机碳(POC)、DIC同位素组成(δ13CDIC)和POC同位素组成(δ13CPOC)以及TN、TP、chla、和藻类种类和数量进行了分析,深入探讨了水电梯级开发对河流碳循环的影响,获得以下几点重要认识。这些认识将为我们理解和评价梯级开发对河流水环境的影响提供重要的科学依据: 1、河水化学的水库效应:河流梯级筑坝拦截使得水库水体基本水化学特征发生变化。研究区水化学类型主要为重碳酸盐-碳酸盐Ca组Ⅱ型水。河流经水坝拦截后,库区水位抬升,水库水化学性质表现出随季节变化的特征。水库中水体在春季开始出现水温的分层结构,这种状况持续到夏季和秋季,有效地限制了上下层水体的垂直交换。河流水体经水库作用后,出库水体水温、pH值均降低。除冬季外,各水库出库水体水温均低于入库水体和库区表层水体。水体水化学组成因此出现较为明显的上下差异。Na+、K+、Mg2+、Cl-、SO42-经水库作用而部分被吸收或滞留;而Ca2+、HCO3-和NO3-经水库作用后增加。 2、生物作用的水库效应:研究区水库中,洪家渡水库、引子渡水库和索风营以绿藻为主,处于中营养状态;普定水库和东风水库以硅藻为主,处于轻度富营养状态;乌江渡水库以蓝藻为主,处于富营养状态。总体上表现为水库库龄与水库营养程度正相关,建库时间越长,水库营养程度越高。 3、碳循环的水库效应:水库作用过程使得出库水体中DIC浓度增加,DOC和POC浓度减少。梯级水库作用使得乌江中上游河流体系DIC输出量增加22.18%,而DOC和POC输出量则分别减少18.19%和70.09%。研究区梯级水库是河流—水库体系DIC的“源”、DOC和POC的“汇”。经梯级水库作用后,乌江中上游河流—水库体系经乌江渡水库每年向下游河流输送的DIC(以C计)、DOC、POC通量分别为263.64 kt、12.40 kt、13.86 kt。 总体上,研究区梯级水库是下游河流DIC的“源”,DOC、POC的“汇”。在水体垂直剖面上,DIC浓度随水深的增加而增加,而DOC、POC浓度则随着水深的增加而减小,但由于底部沉积物的再悬浮作用,使得部分剖面中底部水体中DOC、POC浓度增加。溶解无机碳同位素组成(δ13CDIC)对水库作用过程有良好的响应,水库出库水体中δ13CDIC值比入库水体和库区表层水体均偏负,在库区坝前垂直剖面上,δ13CDIC值随着水深的增加而偏负,δ13CPOC值变化规律性较差。从研究结果来看,δ13CDIC值可用于对水库作用过程对水环境的影响进行示踪。 4、水库的温室气体释放:总体上,入库水体中溶解CO2分压(pCO2)低于出库水体。河流经水库截留后,水体中pCO2增高,向大气中释放的CO2增加,成为大气CO2的“源”。在水库内部垂直剖面上,水体中CO2分压随着深度的增加而增大。由于水库为下层泄水,使得出库水体中CO2分压显著高于大气分压,CO2释放通量平均为水库库区表层水体的6.51倍。由此可见,在研究水库作用过程对大气中温室气体的影响时,水库泄水的CO2释放问题需引起极大的重视。
Resumo:
本论文选择乌江流域普定水库、东风水库作为研究对象,对两个水库系统中汞的环境地球化学循环做了较为完整深入的探讨。具体来说本论文包括以下几方面的工作:(1)揭示普定和东风水库水体各种形态汞的含量、时空分布规律。(2)水库水体水质参数的分布机制研究,明确与水质参数相联系的流域环境对水库水体汞分布的影响。(3)弄清普定水库、东风水库沉积物以及孔隙水各种汞形态的含量、分布规律。(4)建立普定水库、东风水库水体汞循环的质量平衡模型,对水体中汞形态的源、汇及其迁移通量进行定量研究。(5)分析了水库对河流甲基汞输送的源效应产生原因,以理解水库-河流系统中汞的环境地球化学循环的作用。通过本论文的研究,取得以下成果: 1、普定、东风水库水库各形态汞丰水期(夏季)普遍高于枯水期(冬、春季)。普定水库夏季总汞、总甲基汞平均浓度分别为4.48和0.32 ng/L,分别是其它两季平均浓度的2.53倍和3.05倍。东风水库夏季总汞、总甲基汞平均浓度分别为2.94和0.33ng/L,分别是其它两季平均浓度的2.53倍和2.64倍。夏季地表径流带来的汞的输入是引起这种季节差异的重要原因。 2、空间分布表明,普定、东风水库无机汞在由河流输入后经过水库系统内的迁移转化,在水库下游段其浓度已有所下降,表现了水库对于无机汞的 “清除”能力。甲基汞浓度在河流经水库蓄水后,在水库库体内得到升高和“蓄集”,并且峡谷型水库在丰水期水流输送作用下库体内的下游段水体具有更强的甲基汞“蓄集”能力。 3、相关矩阵分析表明,两个水库的水质参数悬浮颗粒物(SPM)、水温(T)和硝酸盐(NO3-)与各形态汞之间普遍存在显著的正相关关系,表明这些参数对于各形态汞的季节分布起着重要作用。夏季丰水期,河流由于雨水带进大量的农田和土壤颗粒,而成为普定、东风水库水体汞的一个重要输入源,同时夏季流域相对活跃的农业耕作活动可能是引起普定、东风水库水体汞水平升高的一个重要原因。 4、普定水库、东风水库沉积物总汞全年平均分别为0.198mg/kg和0.204mg/kg,两者没有显著差异,但明显的高于其它没有污染的水体沉积物,低于处于同一流域的红枫湖水库。沉积物甲基汞浓度峰值主要出现在硫酸盐还原细菌活动区域,有机质含量在某种程度上也影响着甲基汞浓度和分布。 5、两个水库沉积物孔隙水中溶解态无机汞、溶解态甲基汞含量明显大于上覆水体。普定水库沉积物4个剖面孔隙水中溶解态总汞向上扩散对上覆水体的影响程度均为夏季>冬季,而溶解态甲基汞向上扩散对水体的影响程度是冬季>夏季。东风水库沉积物溶解态总汞、溶解态甲基汞扩散对上覆水体的影响程度的季节变化没有规律。 6、水库水体总汞质量平衡模型的估算结果表明,普定水库水体的汞总源为19088.2 g.a-1,总汇为19087.4g.a-1。东风水库水体的汞总源为17116.5 g.a-1,总汇为22562.9g.a-1。河流输入都是两个水库总汞最大的源,普定水库最大的汇是水体是向沉积物的沉降,东风水库最大的汇下泄河流总汞的输出。 7、对水库在河流甲基汞输送过程中的“源”效应分析表明沉积物孔隙水向水体释放甲基汞是水库内部甲基汞产生的重要环节,是水库对河流形成甲基汞源效应的重要原因。
Resumo:
对河流地球化学特征的研究可以获得有关流域化学风化以及化学元素在地球表生系统生物地球化学循环的相关信息。同时,流域风化作用是全球长期碳旋回及与其有关的环境效应的一个重要组成部分。我国学者对大流域的碳酸盐岩地区进行了大量研究,但硅酸盐地区的研究相对薄弱,研究指出:中国河流水的离子组成主要受碳酸盐风化作用和蒸发岩溶蚀作用的影响,受铝硅酸盐风化作用的影响不如前两者明显。硅酸盐岩的风化产物在一定程度上控制着地表水系的地球化学组成,因而对硅酸盐岩区河流的地球化学组成变化的研究,有助于我们了解硅酸盐岩地区的化学风化作用与水文地球化学特征的关系,以及控制河流水体地球化学组成变化的多种因素。赣江是长江的主要支流,在江西省国民经济、生态环境保护和社会生活中占有重要的地位。尤为重要的是,赣江流域广泛分布有硅酸岩岩石和土壤,是世界上硅酸岩连片分布的典型地区之一。由赣江水体和悬浮物携带输送的各类物质组分经鄱阳湖输入长江是全球元素地球化学循环的重要组成部分,对全球环境变化研究有重要意义。 本论文利用赣江流域物理化学参数、化学质量平衡和同位素地球化学研究手段,重点讨论赣江流域的水化学特征、主要离子来源,并探讨主要的化学风化反应。定量计算了流域化学风化侵蚀速率及其对大气CO2消耗的影响,探讨了河流水化学特征与人为活动、气候、地形、岩性等因素之间的关系。得出如下主要结论和几点新认识。 赣江流域河流受控于中亚热带湿润季风气候条件下,碳酸盐硅酸盐化学风化和人为活动的共同影响,以快速的碳酸盐和典型硅酸盐的化学风化共同侵蚀作用区别于其他地区河流。枯水期和丰水期样品中,阳离子中Na+和Ca+含量最高,其次是Mg2+,K+含量最低;阴离子中,Cl-,HCO3-占主导地位,SO42-次之,NO3-含量最低;溶解性硅的含量变化范围不大。赣江流域河水的化学组成反映了硅酸盐岩化学风化作用对河水化学组成控制的典型特征。 受赣江流域气候、岩性、地形和人为活动的影响,枯水期丰水期离子成分主要来源于岩石/土壤的化学风化。碳酸盐岩矿物风化与硅酸盐岩矿物相比是普遍而快速的,所以赣江流域风化很大程度上会受碳酸盐所支配。此外,人为输入影响与赣江流域发达的农业、工业生产产生污染相一致。 赣江流域HCO3-与Ca2+、HCO3-与Mg2+、SO42-与Mg2+、Na+与Cl-均存在明显的相关关系。Na+与SO42-、HCO3-与Si、Na+与Si、K+与Si不存在相关性或相关性不明显。赣江流域样品Si/(Na*+K)比值范围低,表明风化作用在表生环境中进行,风化作用中主要是富含阳离子的次生矿物。Si浓度受生物影响很小,主要是岩性的作用。 除了岩石风化溶解作用,赣江流域盆地区域降水量将直接影响地表径流和河流流量。河流流量对各主要离子浓度的影响顺序为HCO3->Ca2+>Mg2+>SO42- >Na+>Cl-,起到稀释作用。所以赣江流域河水特征受岩性和气候条件的共同作用。 赣江流域高的锶同位素比值(87Sr/86Sr)表明了赣江流域Sr来源的硅酸岩风化典型特征,丰水期河流溶解态Sr浓度有所下降。锶同位素为大气降水和岩石风化的混合型,并且辨别出两个碳酸盐硅酸盐是最主要的岩石风化溶解端元组分。 利用SPSS统计软件,对9个离子组分作为变量进行主成分分析(PCA)和因子分析,解析出主要影响因素。分析统计结果表明两类岩石和人为输入对河水溶解质的贡献率分别是:碳酸盐最大,其次是硅酸盐,人为活动输入最小。并定量的计算出碳酸盐、硅酸盐、大气CO2和人类活动对于赣江溶质组成的相对贡献率。根据径流量和流域面积,计算得到每年赣江流域岩石风化作用的大气CO2消耗分别为枯水期520.2×103mol/km2和丰水期383.4×103mol/km2,较强烈的碳酸盐风化溶解和明显的硅酸盐风化特征导致了赣江流域岩石风化作用的CO2消耗率高于世界平均水平。扣除大气CO2和人类活动输入的贡献后,估算得到赣江流域的年均化学风化率为30.3t/km2•a,在影响河流化学风化的众多因素中,地质和气候因素起着主导作用。赣江流域对于全球的大气CO2源汇效应是明显的汇项。
Resumo:
低分子有机酸是对流层大气的重要组成成分,广泛分布于大气中的气相、液相、气溶胶中。本文以贵州省安顺作为研究区域,在 2007 年 6 月~2008年 6月期间,收集大气降水样品118个,对降水中主要成份尤其是低分子有机酸及其对自由酸度的贡献进行了为期一年的研究。并通过与贵州其它3个地区的对比,重点讨论了大气降水中低分子有机酸时间和空间的变化规律、成因机制、对降水自由酸度的贡献以及来源等关键问题。得出的主要结论如下: (1) 安顺降水总体呈酸性,pH雨量加权平均值为 4.89,范围在3.57~7.09,酸雨频率为 57.0%。降水的电导率平均值为46.52μs•cm-1,变化范围为6.01~298.00 μs•cm-1,该值远远高于降水背景站点,表明该地区受到了明显的人为活动影响。 (2) 安顺大气降水中离子浓度的顺序依次为SO42->Ca2+>NH4+>NO3-> Mg2+>K+>Na+>Cl->H+>HCOOHt>CH3COOHt >(COOH)2(t)2-。大气降水中最重要的离子为SO42-、NO3-(阴离子)和Ca2+、NH4+ 和Mg2+(阳离子),平均浓度依次为140.9、46.1、124.2、45.4和36.2µmol/L。相关性分析和聚类分析表明,安顺SO2和NOx具有同源特征,且进入降水的途径相同。大气中的铵主要以硫酸铵与硝酸铵的形式存在于大气中,成为大气中重要的酸性气溶胶。另外,CaSO4、NaCl、MgCl2、(NH4)2SO4、NH4NO3、KNO3、H2SO4、HNO3是降水的主要化学组分。降水中Ca2+、NH4+、Mg2+和K+的中和因子分别为0.38、0.14、0.22、0.05,表明降水中最重要的中和物质是Ca2+,其次是Mg2+和NH4+。源分析表明,安顺大气降水中的K+和Ca2+主要来自以岩石和土壤为主的陆相输入,而SO42-和NO3-主要来自人为活动的贡献,其人为贡献量高达97.0%和94.3%。Mg2+主要来自陆源输入,仅有9.1%来自海水的贡献。Cl-属于海盐性离子,但在安顺降水中,仅有57.3%来自海相输入,小部分(1.3%)来自岩石和土壤风化的贡献,人类活动排放的Cl-也是该地区一个重要来源。 (3) 安顺大气降水中共检测出7种低分子有机酸,含量最高的有机酸组成依次是甲酸(HCOO-)、乙酸(CH3COO-)和草酸((COO)22-),雨量加权平均浓度分别为8.77、6.90和2.84µmol/L。降水中所测有机酸的平均总含量为19.00µmol/L,对阴离子总和的贡献为12.6%。对于 pH<5 的降水,甲酸、乙酸和草酸对自由酸度的平均贡献值(按最大贡献率法计算)分别为 19.2%、5.9和7.8%,总有机酸(三者之和)对自由酸度的平均贡献值为32.9%。这些事实表明,安顺大气降水中的有机酸是降水化学物质的重要组成部分,会对降水的物理和化学特征产生重要的影响。采样期间,安顺甲酸、乙酸和草酸的湿沉降通量分别为10.81、10.46和3.94 mmol/m2/year。根据气液平衡理论,估算出甲酸和乙酸的干沉降量,分别为4.78和1.63mmol/m2/year。 (4) 安顺降水有机酸浓度存在着明显的季节性变化,四季的有机酸浓度由高到低分别为:冬季>春季>夏季>秋季;非生长季节>生长季节。这种季节变化特征显然与植物生长的季节变化特征不一致。表明安顺大气中的有机酸浓度的影响因素非常复杂;植物生长、降雨量(降雨强度和持续时间)和人为活动等因素的季节变化都会影响大气有机酸的组成和分布特征。在连续降雨过程的监测中发现甲酸和乙酸的浓度是随降雨过程(时间)同步变化,这说明甲酸与乙酸很可能存在相同的来源或者相似的源强,它们在大气中的清除方式也可能相同。而草酸的浓度与日照强度和温度有关,与降雨发生的时间有很重要的关系,表明草酸多来源于光化学反应为主的间接来源。另外,还发现降雨初期降水酸性要强于降雨后期,这表明降雨对大气中污染物质有明显的清除和稀释作用。 (5) 相关性分析表明,甲酸和乙酸之间存在显著的相关关系,相关系数为0.80,这种强烈的正相关表明甲酸和乙酸具有相似的排放源或者排放源不同但有相似的排放强度;草酸与甲酸和乙酸也都具有显著相关关系,这可能是因为草酸与甲酸和乙酸具有相同的排放源或者是草酸的前体物如甲醛与甲酸、乙酸具有相似的排放源;甲酸与NH4+、NO3- 和NO2-的相关关系也很高,表明甲酸的主要来源是农业活动或者生物质燃烧和汽车尾气排放等。乙酸和草酸的情况与甲酸类似。论文建立了甲酸与乙酸分析浓度比值(F/A)T的判定方程曲线,结果表明安顺有机酸主要来源于直接来源,包括植物直接释放,生物质燃烧,汽车尾气排放等;间接来源如不饱和碳烃化合物(如烯烃和异戊二烯)和醛类物质(如甲醛)的光化学氧化不是该地区有机酸的主要来源。 (6) 对比贵州其它3个监测站点的降雨数据后,发现大气降水对降水酸度的贡献,偏远地区(尚重)要远大于工业城市。另外,安顺和尚重大气有机酸以直接来源为主。其中,尚重有机酸的主要来源是植物释放,而安顺有机酸的主要来源是生物质燃烧、汽车尾气等人类活动的释放。贵阳市有机酸的主要来源是间接来源,即有机酸前体物的光化学氧化。遵义有机酸的来源具有明显的季节周期性,在夏秋以直接释放为主,而春冬季节以间接释放为主。
Resumo:
土壤是自然环境的重要组成部分,是人类赖以生存与发展的宝贵资源。但是近年来我国土壤重金属污染日益严重,重金属污染物与其它类型的污染物相比具有隐蔽性、长期性与不可逆性等一系列特殊性,成为土壤中永久的污染物,最终通过食物链的传递进入人体,对人类的健康造成潜在的危害。因此,研究土壤重金属污染与控制具有很重要的意义。本论文首次将唐南膜平衡法(DonnanMembraneTechnique)和EcosAT(EquilibriumCalculationOfSpeciationAndTransport)模型引入我国土壤重金属活动性研究,并将两种方法获得的结果进行比较,互相验证,取得了较好的结果。还将两种方法结合探讨了贵州铝厂生产的赤泥对土壤中的游离重金属离子浓度的影响。土壤样品采于贵州都匀福锌矿地区,一个位于锅锌矿选厂尾矿坝下农田中的水稻土,以下简称坝下土,为重污染土;另一个位于锅锌矿上游桥边农田中的水稻土,以下简称桥边土,为轻污染土,本研究取得的主要结论与认识包括:1.作者对唐南膜平衡法进行了部分改进,用国内生产的JAM一I型均相离子交换膜替换Brwin等所用的BDH膜,既降低了实验的平衡时间,又经济实惠。另外还用KNO3溶液代替KNO3和Ca(NO3)2混合溶液作为实验的介质溶液,就可以避免由于国内土壤中Ca2+含量差异较大可能造成的误差。其它实验条件为:蠕动泵的流速为2.0ml/min,平衡时间为48小时。2.用柠檬酸体系(液一液体系)和土壤一水体系(固一液体系)检验了唐南膜平衡法,它可以在不扰动体系平衡的基础上同时测定同一体系中的多个游离金属离子浓度,而且各金属离子之间互不干扰。3.桥边土中的游离重金属离子浓度与其中2mol/LHNO3提取的重金属总含量成很好的直线关系,其中Cu和Zn游离离子浓度与其中的总金属含量呈现较好的正比关系,随着重金属总含量的降低,即土液比的降低,游离重金属离子浓度随之降低;而其中的Ni和Cd却相反,随着重金属总含量的降低,游离重金属离子浓度反而增加。添加赤泥后随着土液比的降低各重金属的游离离羲?子浓度的变化趋势与添加赤泥前一样。桥边土中的重金属游离离子浓度在添加联合法赤泥后有所增加,而拜尔法赤泥的加入降低了其中的游离重金属离子浓度,加入的比例越大,变化的量越多,而且其中Ni和cd的变化幅度比Cu和Zn的要大。4.坝下土中Cu、Zn、Ni和Cd元素的游离离子浓度与它们在土壤中Zmol/LHNo3提取的重金属总含量呈很夯的正比关系,随着重金属总含量的降低,游离重金属离子浓度随之降低。添加赤泥后其中Cu和Zn元素的变化趋势与添加赤泥前一样,Ni和Cd元素出现了异常,Ni在赤泥添加比例为0.50%时变化趋势一样,但添加比例为2.00%时其离子浓度先增加,但在土液比为1:100时反而有较大幅度的降低。而其中Cd离子浓度先增加,在土液比为1:100时反而有较大幅度的降低。坝下土中Cu和Zn的游离离子浓度在添加赤泥以后改变很小,赤泥添加比例为2.00%的土壤中的游离离子浓度相对较低一点,而添加比例为0.50%的与未加赤泥的土壤基本上一样;其中Ni和Cd的变化相对来说较大,赤泥添加比例为2.00%的土壤中的游离离子浓度降低得比较明显,拜尔法赤泥添加比例为0.50%的土壤也得到了较大的改善,而联合法赤泥添加比例为0.50%的却比未加赤泥的土壤中的还要高一点。5.利用ECOSAT模型模拟了本论文所涉及的实验中的游离重金属离子浓度,测量值与模拟值取得了较好的一致,除了Zn的误差较大以外,其它三个元素符合的很好,从而表明EC0sAT在土壤一水系统中的模拟取得了较好的结果。6.模拟了不同土液比土壤中各重金属元素在有机质、铁氧化物、粘土和唐南凝胶体这四种吸附相中的分配。发现在所研究的土壤样品中所有元素在粘土相中所占的比例很小,可以忽略不计,Cu主要分布在有机质相中,占80%左右,随着土液比的降低,其在有机质和唐南凝胶体相中的分配比例慢慢变小,而在铁氧化物中的比例越来越大;Zn主要分布在有机质和铁氧化物相中,各占40%左右;随着土液比的降低,Zn在有机质相中的比例增大,铁氧化物比例几乎不变,而唐南凝胶体所占比例逐渐减小;Ni基本上只分布在有机质和铁”氧化物相中,Cd则几乎只存在于有机质相中,它们的分布比例几乎不随土液比的改变而变化。7.无论在桥边土和坝下土中添加何种赤泥,添加的比例是多少,在添加赤泥前后土壤中重金属元素在各吸附相中的分配比变化很小,主要是有机质相所占比例稍微变小,而铁氧化物相相应的有一点增加。而对于不同的土液比,其变化趋势相同,只是变化幅度相对来说较大。
Resumo:
中国西南喀斯特地区有突出的地球化学敏感性和生态环境脆弱性等特征,其中水环境污染是喀斯特地区所面临的极其严重的生态与环境问题。水环境生源物质循环过程对于人类生存环境质量的保护和提高有着直接的联系,由于环境体系受多种控制因素影响,利用多同位素方法讨论单一环境体系中物质循环过程和生态环境效应已成为同位素地球化学发展的一个重要趋势。碳、氮同位素已被广泛用于探讨和解决当前的一些重大环境问题,如生源要素生物地球化学对人为污染物的响应、温室气体的来源、湖泊富营养化、地下水硝酸盐污染等。为此本论文利用稳定同位素技术(13C、I5N、18O),以喀斯特城市地下水为主要研究对象,对贵阳雨水中的C、N沉降过程、贵阳/遵义地下水C、N同位素地球化学进行了初步研究。通过以上研究,得到以下的主要认识。1.探讨了贵阳雨水中碳沉降的年变化特征,结果表明贵阳雨水DOC平均值为3.76mg/L,POc平均值为0.54mg/L,含量季节间变化不显著。雨水中DOc与PH呈负相关关系,表明有机碳中酸性成份对酸雨有一定贡献。δ13C-POC取值范围在(-27.0,-24.0‰)之间,季节间差异不大,结合已有研究结果表明雨水中颗粒有机碳主要来源于雨水所冲刷的本地大气颗粒物。2.探讨了贵阳雨水无机氮沉降的年变化特征,结果表明贵阳城区雨水中的NH4+、NO3-、δ15N-NH4+,δ15N-NO3-,δ18O-NO3-,季节性差别都不大。NH4+主要来源于土壤中NH3挥发以及大气颗粒物中按的洗脱,而硝酸盐可能主要来源于燃煤和机动车的排放等,同时气候是影响同位素组成差异性表现的一个重要影响因素。3.初步分析了贵阳与遵义地下水/地表水主要水化学成分,结果证实水体水化学组成主要受研究区水文地质背景控制,即阳离子主要以Ca2+,Mg2+为主,而阴离子以HCO3-,SO42-离子为主。但是有部分水样有较高的人为输入物质K+,Na+,Cl-和NO3-,表明人为活动在研究区内已对地表水/地下水产生一定影响。4.利用碳同位素较好地示踪了地下水溶解无机碳季节变化的主要规律,地下水夏季的DIC含量明显低于冬季DIC含量,这是由于大量降水的稀释作用引起的。地下水DIC夏季一般比冬季更富集12C,表明夏季地下水中生物成因无机碳贡献增加。经计算表明贵阳/遵义地下水来源于碳酸盐风化的无机碳比重大多数大于50%,表明硫酸可能参与风化过程。5.较为系统地探讨了地下水/地表水中有机碳的冬季/夏季演化规律以及受影响因素,地下水大多数样品DOC和POC含量不高,个别受污染样品明显具有较高有机碳含量。大部分夏季地下水δ13C-POC明显大于冬季,表明夏季地下水颗粒有机碳受外源(C4植物碎屑)输入影响。地表水TOC(DOC+POC)与人为输入离子[K+Na++Cl-]呈一定的正相关关系,表明有机碳主要受人为污染影响。6.以贵阳为例,根据δ13CDIC等势图、结合主要水化学特征在空间上的分布可知,贵阳市区中部,东北部及西郊农业区地下水受污染较为严重。表明一定条件下,碳同位素组成可以用来指示区域地下水受人为活动影响范围。7.通过对地下水三氮分析初步掌握了地下水氮污染的基本特征,地下水中NO3-是最主要的无机氮形态,NH4+和NO2-含量大多较低,地下水中具有高NO2-与NH4+的水样比较分散,表明点源污染是主要的。8.利用氮氧同位素示踪了贵阳地下水硝酸盐污染来源的季节变化,同时证实了部分地下水发生反硝化。冬季硝酸盐相对夏季含量较低,并且目SN与夕80的平均值都相对较高,表明夏季受外源氮污染明显,郊区地下水硝酸盐主要受硝态氮肥污染影响,城区地下水硝酸盐污染严重,城市生活排泄物是主要的氮污染源;硝酸盐氮氧同位素联同按氮同位素等可以得知部分地下水中存在明显的反硝化作用。9.利用氮同位素取值分布和季节间频度分布变化初步讨论了遵义地下水硝酸盐污染来源的季节变化。遵义含NO3-较高的地下水主要分布在市区、茅草铺(市东北郊)和新店子一忠庄一带(市东南郊)。夏季地下水硝酸盐δ15N的平均值明显低于冬季,一表明夏季地下水受农业化肥等低δ15N值氮污染源污染。10.两城区地下水受点源污染为主,在局部区域有向含水层面源污染转化的趋势。喀斯特城区地下水中C、N物质的循环对环境变化响应较快,同时受不同区域降雨过程和土壤营养物质过程影响而表现出一定的差异性。
Resumo:
Ammonia synthesis over ruthenium catalysts supported on different carbon materials using Ba or K compounds as promoters has been investigated. Ba(NO3)(2), KOH, and KNO3 are used as the promoter or promoter precursor, and activated carbon (AC), activated carbon fiber (ACF). and carbon molecular sieve (CMS) are used as the support. The activity measurement for ammonia synthesis was carried out in a flow micro-reactor under mild conditions: 350-450 degreesC and 3.0 MPa. Results show that KOH promoter was more effective than KNO3. and that Ba(NO3)(2) was the most effective promoter among the three. The roles of promoters can be divided into the electronic modification of ruthenium, the neutralization of surface functional groups on the carbon support and the ruthenium precursor. The catalyst with AC as the support gave the highest ammonia concentration in the effluent among the supports used, while the catalyst with ACF as the support showed the highest turnover-frequency (TOF) value. It seems that the larger particles of Ru on the carbon supports are more active for ammonia synthesis in terms of TOF value. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The coadsorption of NO and O-2 on Ag(110) surface has been studied by X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS) and in situ Raman spectroscopy. The existence of oxygen enhances the adsorption of NO by forming the NOx species, that is, NO2 and NO3, and the NO in turn as a promotor facilitates the cleavage of the dioxygen bond, forming the surface atomic oxygen species having the same spectral characteristics as those produced using oxygen at high pressure. The oxygen species generated by the interaction is composed of two parts. One is produced directly by the decomposition of surface NO-O-2 complex at ca 625 K, which raised an O 1s feature at 530.5 eV and is absent at ca 800 K, while the another with an O 1s binding energy of 529.2 eV emerges at higher temperatures and shows similar properties as the reported gamma-state oxygen which bound tightly on restructured silver surface. The exposure to NO and O-2 causes noticeable changes in the morphology of the Ag(110) surface and the flat terraces superseded by small (ca 0.1 mu m) pits, and particles with typical diameters of a few micrometres were formed at elevated temperatures. (C) 1999 Elsevier Science B.V. All rights reserved.