310 resultados para liquid phase epitaxy
Resumo:
On the basis of the thermodynamics of Gibbs, the spinodal for the quasibinary system was derived in the framework of the Sanchez-Lacombe lattice fluid theory. All of the spinodals were calculated based on a model polydisperse polymer mixture, where each polymer contains three different molecular weight subcomponents. According to our calculations, the spinodal depends on both weight-average ((M) over bar (w)) and number-average ((M) over bar (n)) molecular weights, whereas that of the z-average molecular weight is invisible. Moreover, the extreme of the spinodal decreases when the polydispersity index (eta = (M) over bar (w)/(M) over bar (n)) of the polymer increases. The effect of polydispersity on the spinodal decreases when the molecular weight gets larger and can be negligible at a certain large molecular weight. It is well-known that the influence of polydispersity on the phase equilibrium (coexisting curve, cloud point curves) is much more pronounced than on the spinodal. The effect of M, on the spinodal is discussed as it results from the infuluence of composition temperatures, molecular weight, and the latter's distribution on free volume. An approximate expression, which is in the assumptions of v* v(1)* = v(2)* and 1/r --> 0 for both of the polymers, was also derived for simplification. It can be used in high molecular weight, although it failed to make visible the effect of number-average molecular weight on the spinodal.
Resumo:
To synthesize the copolyester of poly(beta-hydroxybutyrate) (PHB) and poly(epsilon-caprolactone) (PCL), the transesterification of PHB and PCL was carried out in the liquid phase with stannous octoate as the catalyzer. The effects of reaction conditions on the transesterification, including catalyzer concentration, reaction temperature, and reaction time, were investigated. The results showed that both rising reaction temperature and increasing reaction time were advantageous to the transesterification. The sequence distribution, thermal behavior, and thermal stability of the copolyesters were investigated by C-13 NMR, Fourier transform infrared spectroscopy, differential scanning calorimetry, wide-angle X-ray diffraction, optical microscopy, and thermogravimetric analysis. The transesterification of PHB and PCL was confirmed to produce the block copolymers. With an increasing PCL content in the copolyesters, the thermal behavior of the copolyesters changed evidently. However, the introduction of PCL segments into PHB chains did not affect its crystalline structure. Moreover, thermal stability of the copolyesters was little improved in air as compared with that of pure PHB.
Resumo:
The transesterification of poly(beta-hydroxybutyrate) (PHB) and poly(epsilon-caprolactone) (PCL) was carried out by using stannous octoate as catalyzer in liquid phase. The effects of reaction conditions on the transesterification, including reaction temperature, reaction time and catalyzer content, were investigated. The sequence distribution, crystallization behavior and thermal stability of PHB-co-PCL copolyesters were studied by C-13-NMR, FTIR, DSC, WAXD and TGA. The results showed that the transesterification of PHB with PCL was confirmed to produce a block copolymer, and enhancing reaction temperature and increasing reaction time were advantageous to the transesterification. With the increase in PCL content in the block copolymer, the crystallization behavior of PHB-co-PCL copolyesters changed evidently. On the other hand, the introduction of PCL segment into PHB chains did not change its crystalline structure; moreover, thermal stability of PHB-co-PCL copolyesters was a little improved in air, comparing with that of pure PHB.
Resumo:
With the aid of thermodynamics of Gibbs, the expression of the spinodal was derived for the polydisperse polymer-solvent system in the framework of Sanchez-Lacombe Lattice Fluid Theory (SLLFT). For convenience, we considered that a model polydisperse polymer contains three sub-components. According to our calculation, the spinodal depends on both weight-average ((M) over bar (w)) and number-average ((M) over bar (n)) molecular weights of the polydisperse polymer, but the z-average molecular weight ((M) over bar (z)) dependence on the spinodal is invisible. The dependence of free volume on composition, temperature, molecular weight, and its distribution results in the effect of (M) over bar (n) on the spinodal. Moreover, it has been found that the effect of changing (M) over bar (w) on the spinodal is much bigger than that of changing (M) over bar (n) and the extrema of the spinodal increases with the rise of the weight-average molecular weight of the polymer in the solutions with upper critical solution temperature (UCST). However, the effect of polydispersity on the spinodal can be neglected for the polymer with a considerably high weight-average molecular weight. A more simple expression of the spinodal for the polydisperse polymer solution in the framework of SLLFT was also derived under the assumption of upsilon(*)=upsilon(1)(*)=upsilon(2)(*) and (1/r(1)(0))-(1/r(2i)(0))-->(1/r(1)(0)).
Resumo:
Mica, as a bridge of the study for combining between quartz crystal microbalance (QCM) and atomic force microscope (AFM), was successfully modified onto the piezoelectric quartz crystal (PQC). This mica-modified piezoelectric quartz crystal (mica-PQC) can be stably oscillated with a shift frequency of +/-1 Hz per half an hour in air. Using this mica-PQC, the processes of DNA adsorbed onto the mica surface were studied in liquid phase. The results show that a bivalent cation, such as Mn2+, can be used as an ionic bridge to immobilize DNA on mica surface. The image of DNA on the mica surface was also obtained by AFM. Mica-PQC gives the possibility of a combination between QCM and AFM in situ.
Resumo:
The development in the oxidation of olefins to ketones catalyzed by palladium compounds was reviewed. Some improved methods for the oxidation of olefins catalyzed by Wacker-type catalyst systems are also summarized. For this reaction, some new catalyst systems and the reaction mechanism are described. Emphasis has been given to the applications of Pd(I)/HPA(heteropoly acid), Pd(I)/FePc (iron phthalocyanine), Pd (I)/HQ (hydroquinone)/FePc, Pd (I)/HQ/HPA, Pd (I)/CuSO4/HPA catalyst systems in the oxidation of olefins to ketones; the application of Pd(I)/LCoNO2, PdCl2 (MeCN)(2)/CuCl, Pd(OAc)(2)/ pyridine, fluorous biphasic catalyst systems in the oxidation of olefins to ketones is also surveyed.
Resumo:
With the aid of Sanchez-Lacombe lattice fluid theory (SLLFT), the phase diagrams were calculated for the system cyclohexane (CH)/polystyrene (PS) with different molecular weights at different pressures. The experimental data is in reasonable agreement with SLLFT calculations. The total Gibbs interaction energy, g*(12) for different molecular weights PS at different pressures was expressed, by means of a universal relationship, as g(12)* =f(12)* + (P - P-0) nu*(12) demixing curves were then calculated at fixed (near critical) compositions of CH and PS systems for different molecular weights. The pressures of optimum miscibility obtained from the Gibbs interaction energy are close to those measured by Wolf and coworkers. Furthermore, a reasonable explanation was given for the earlier observation of Saeki et al., i.e., the phase separation temperatures of the present system increase with the increase of pressure for the low molecular weight of the polymer whereas they decrease for the higher molecular weight polymers. The effects of molecular weight, pressure, temperature and composition on the Flory Huggins interaction parameter can be described by a general equation resulting from fitting the interaction parameters by means of Sanchez-Lacombe lattice fluid theory.
Resumo:
Using electrospray ionization (ESI) and tandem mass spectrometry techniques, the protonic positions in protonated molecular ions of some narcotic drugs were studied, The data of ESI/MSn experiments of morphine and deuterium-loaded morphine were first discussed. The protonic position was considered to locate on oxygen atom of cyclic ether in morphine molecular, Compared with the same and different: ions among morphine, codeine, acetylcodeine and dihydrocodeine, the protonic positions in protonated molecular ions of these compounds were further determined. The fragmentation mechanism of morphine in ESI/MSn: experiments was also repored in the paper, and there were similar dehydrolysis mechanism in gas phase or in liquid phase for morphine.
Resumo:
Blends of high-density polyethylene (HDPE) with novel linear low-density polyethylene (LLDPE) samples in the whole range of compositions were investigated by means of differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD). The LLDPEs are ethylene/octene-1 copolymers prepared with a single-site catalyst, with a narrower distribution of branches compared to Ziegler-Natta type polymers. It was found that cocrystallization or separate crystallization in the blends profoundly depends on the content of branches in the LLDPE, while the critical branch content of the novel LLDPE for separate crystallization is much lower than that of commercial LLDPE (prepared with Ziegler-Natta catalysts). This implies that the miscibility of linear and branched polyethylene is also affected by the distribution of branches. The marked expansion of the unit cell in cocrystals, which are formed by HDPE with the novel LLDPE, indicates that the branches are included in the crystal lattice during the cocrystallization process. The result is very helpful to understand the phenomenon that the unit cell dimensions of commercial branched polyethylene are larger than those of linear polyethylene.
Resumo:
Iron(II)-8-quinolino/MCM-41 is prepared. Its catalysis is studied in phenol hydroxylation using H2O2 (30%) as oxidant. The experiment shows that Iron(II)-8-quinolinol/MCM-41 has good catalytic activity and desired stability. Based on cyclic voltammetry, ESR, and UV-visible spectra studies of iron(II)-8-quinolinol complex in liquid phase, a radical substitution mechanism is proposed and used to demonstrate the experimental facts clearly. (C) 1997 Academic Press.
Resumo:
Heteropolyacids (HPAs) possess both acidic and redox catalytic properties and held extensive promise of practical application. These type of compound display a great potential of specific synthesis reactions for replacing sulfuric acid to satisfy the requirements of environmental protection. Heterogenizing HPAs would not only make them more useful in liquid phase oxidation with oxygen and in acid-catalyzed reaction, as the catalyst is often difficult to separate from the reaction products, but also create favorable factors for realizing heterogenization of homogeneous reaction and even utilizing new technology of catalytic distillation. In this paper, different kinds of porous materials which are well characterized, including oxides such as Al2O3, SiO2, TiO2, diatomite, bentonite, and active carbon of different sources, were used as support for heterogenizing HPAs (in different media), and the obtained results, the intrinsic characters of supports which may influence both the nature of the interaction between HPAs and supports in the heterogenization and the activity in the catalytic reaction, are explored. It is expected that these can provide a referential model for preparing supported acid catalyst used in liquid phase.
Resumo:
The Gibbs free energies and equations of state of polymers with special molar mass distributions, e.g., Flory distribution, uniform distribution and Schulz distribution, are derived based on a lattice fluid model. The influence of the polydispersity (or t
Resumo:
For a binary mixture of polydisperse polymers with strong interactions, the free energy, the equation of state, the chemical potentials and the spinodal are formulated on the basis of the lattice fluid model. Further, the spinodal curves for the system wi
Resumo:
A statistical thermodynamics theory of polydisperse polymer blends based on a lattice model description of a fluid is formulated. Characterization of a binary polydisperse polymer mixture requires a knowledge of the pure polymer system and the interaction energy. It is assumed that the intrinsic and interactive properties of polymer (for example, T*, P*, rho*, and epsilon(ij)*) are independent of molecular size. Thermodynamic properties of ternary and higher order mixtures are completely defined in terms of the pure fluid polymer parameters and the binary interaction energies. Thermodynamic stability criteria for the phase transitions of a binary mixture are shown. The binodal and spinodal of general binary systems and of special binary systems are discussed.
Resumo:
A statistical thermodynamics theory of polydisperse polymer mixtures with strong interaction between dissimilar components based on a lattice fluid model is formulated. Expressions for the free energy, equation of state, phase stability and spinodal for a polydisperse, binary polymer mixture with strong interaction are derived.