264 resultados para conduction


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dysprosium and ytterbium monophosphides have been prepared by the solid state reaction. The optical and electrical properties have been studied. Evidence that DyP and YbP are semiconductors has been obtained from the study of the absorption spectrum, the negative temperature coefficient of resistance and the rectifying effect. Their energy gaps are determined as 1.15 eV for DyP and 1.30 eV for YbP, electric conduction type is n-type, resistivities are about 10(-2) ohm cm and Hall mobility is 8.5-80 cm2/Vs. The p-n junction is formed on the LnP/Si.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The optical, electrical and photoelectronic properties of rare earth monophosphides (LnP, Ln = La, Nd, Sm and Y) have been studied. The experimental results indicate that their resistivities are low, the electric conduction in all of them is N-type, the energy gaps of LaP, NdP, SmP and YP are 1.46eV, 1.15eV, 1.1eV and 1.0eV, respectively. The SmP/Si and YP/Si junctions exhibit the photovoltaic effect. They may be used as photoelectronic sensors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The optical, electrical and photoelectric properties of rare earth monophosphides (LnP, Ln = La, Nd, Sm, Y, Dy and Yb) have been studied in thin films. The films exhibit semiconducting behaviour with energy gaps of 1.0-1.46 eV and n-type electrical conduction. Their resistivities are 10(-2) OMEGA-cm with corresponding Hall mobilities of 8.5-400 cm2 V-1 s-1. The films are deposited on a p-type silicon substrate in vacuum. Voltage-current characteristic measurements show that a p-n junction has been formed between LnP and silicon. Spectral sensitivity and a photovoltaic effect have been observed in LnP-Si junctions. They may be useful photoelectric materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electrical and magnetical properties of LaSr(2-x)Ca(x)V3O9 +/- y have been investigated. The compounds are antiferromagnetic. They show a metallic conduction other than semiconductivity. The trivalent and tetravalent vanadium ions coexist in the system. The magnetic susceptibility increases and the resistivity decreases at room temperature with the increase of x value. It is shown that the change of the valency state of vanadium obviously influences the electrical and magnetical properties of the system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The difference between the Mossbauer parameters for EuBa2Cu3O7-x with dc electric current and those without dc electric current at 83 K has been observed. The change in isomer shift, electric quadrupole splitting and the asymmetry parameter of the electric field gradient at the Eu-151 nucleus may be caused by the movement of a mass of conduction electrons along a certain direction in the EuBa2Cu3O7-x crystal with a layered structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

以Fourier瞬态传热方程为基础,确定了强流脉冲离子束(HIPIB)热效应的基本传热方程,对靶材45钢进行不同能量参数的HIPIB辐照热效应的模拟计算.针对离子注入金属内部的情况,在模拟束流加载方式上分别采用体加载和面加载,比较了两种加载计算结果之间的差距.本算法的另一个改进就是在高能量辐照下,用单元死活法对蚀坑部分材料的消失进行模拟.结果表明,用单元死活法模拟单元的失效,更能符合HIPIB辐照金属表面热效应的蚀坑机制;单元死活法对靶材的升温过程没有明显影响,但对冷却阶段,可以显著提高模拟的精度.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report is a conclusion of the major research outcome during my post-doctoral residence of research and work. Its content covers the researches of the deep thermal characteristic and dynamics evolution beneath the northern margin basin of South China Sea. In this report, the each other action and effect between lithosphere ad mantle convection were regarded by the combine of deep and shallow study, subdivision from whole to part, and pay equal attention to determine the nature and fixed quantity. The investigative method we used in this report is geothermal and gravity methods. By the help of geological model and geophysics modeling, we calculated lithosphere thermal structure, rheology structure and mantle convection. Firstly, the report introduces concisely the purpose and the previous achievement to this research. Then, it analyzed the characteristic of heat flow on South China Sea. The structure of deep temperature and thermal has been calculated in some models of heat generation and conduction. The rock rheology structure also was computed by the relationship between temperature and viscosity. All these calculations were finished under the guidelines of combine with geology and geophysics. Meanwhile, the fields both deep mantle convection and small scale upper mantle convection are computed. Beside, the density and temperature disorder resulted by mantle convection were also computed with the convection field. After these, the report bring the contribution of local field of mantle convection, thermal construct and effective viscosity beneath the northern margin basin of South China Sea. And, base on the tectonic background and evolution feature, this report discussion the evolution mechanism of south China Sea and its northern margin basin. The end of this report, the main conclusion of this research was summarized and brings out.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The technique of energy extraction using groundwater source heat pumps, as a sustainable way of low-grade thermal energy utilization, has widely been used since mid-1990's. Based on the basic theories of groundwater flow and heat transfer and by employing two analytic models, the relationship of the thermal breakthrough time for a production well with the effect factors involved is analyzed and the impact of heat transfer by means of conduction and convection, under different groundwater velocity conditions, on geo-temperature field is discussed.A mathematical model, coupling the equations for groundwater flow with those for heat transfer, was developed. The impact of energy mining using a single well system of supplying and returning water on geo-temperature field under different hydrogeological conditions, well structures, withdraw-and-reinjection rates, and natural groundwater flow velocities was quantitatively simulated using the finite difference simulator HST3D. Theoretical analyses of the simulated results were also made. The simulated results of the single well system indicate that neither the permeability nor the porosity of a homogeneous aquifer has significant effect on the temperature of the production segment provided that the production and injection capability of each well in the aquifers involved can meet the designed value. If there exists a lower permeable interlayer, compared with the main aquifer, between the production and injection segments, the temperature changes of the production segment will decrease. The thicker the interlayer and the lower the interlayer permeability, the longer the thermal breakthrough time of the production segment and the smaller the temperature changes of the production segment. According to the above modeling, it can also be found that with the increase of the aquifer thickness, the distance between the production and injection screens, and/or the regional groundwater flow velocity, and/or the decrease of the production-and-reinjection rate, the temperature changes of the production segment decline. For an aquifer of a constant thickness, continuously increase the screen lengths of production and injection segments may lead to the decrease of the distance between the production and injection screens, and the temperature changes of the production segment will increase, consequently.According to the simulation results of the single well system, the parameters, that can cause significant influence on heat transfer as well as geo-temperature field, were chosen for doublet system simulation. It is indicated that the temperature changes of the pumping well will decrease as the aquifer thickness, the distance between the well pair and/or the screen lengths of the doublet increase. In the case of a low permeable interlayer embedding in the main aquifer, if the screens of the pumping and the injection wells are installed respectively below and above the interlayer, the temperature changes of the pumping well will be smaller than that without the interlay. The lower the permeability of the interlayer, the smaller the temperature changes. The simulation results also indicate that the lower the pumping-and-reinjection rate, the greater the temperature changes of the pumping well. It can also be found that if the producer and the injector are chosen reasonably, the temperature changes of the pumping well will decline as the regional groundwater flow velocity increases. Compared with the case that the groundwater flow direction is perpendicular to the well pair, if the regional flow is directed from the pumping well to the injection well, the temperature changes of the pumping well is relatively smaller.Based on the above simulation study, a case history was conducted using the data from an operating system in Beijing. By means of the conceptual model and the mathematical model, a 3-D simulation model was developed and the hydrogeological parameters and the thermal properties were calibrated. The calibrated model was used to predict the evolution of the geo-temperature field for the next five years. The simulation results indicate that the calibrated model can represent the hydrogeological conditions and the nature of the aquifers. It can also be found that the temperature fronts in high permeable aquifers move very fast and the radiuses of temperature influence are large. Comparatively, the temperature changes in clay layers are smaller and there is an obvious lag of the temperature changes. According to the current energy mining load, the temperature of the pumping wells will increase by 0.7°C at the end of the next five years. The above case study may provide reliable base for the scientific management of the operating system studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Platinum utilization in the gas-diffusion catalyst layer and thin-film catalyst layer is investigated. The morphology of PTFE and Nafion in a simulated catalyst layer is examined by scanning electronmicroscopy (SEM) and transmission electron microscopy (TEM). The results show that the platinum utilization of the thin-film catalyst layer containing only Pt/C and Nafion is 45.4%. The low utilization is attributed to the fact that the electron conduction of many catalyst particles is impaired by some thick Nafion layers or clumps. For the gas-diffusion (E-TEK) electrode, the platinum utilization is mainly affected by the proton conduction provided by Nafion. The blocking effect of PTFE on the active sites is not serious. When the electrode is sufficiently impregnated with Nafion by an immersion method, the platinum utilization can reach 77.8%. Transmission electron micrographs reveal that although some thick Nafion layers and clumps are observed in the Pt/C + Nafion layer, the distribution of Nafion in the catalyst layer is basically uniform. The melted PTFE disperses in the catalyst layer very uniformly. No large PTFE clumps or wide net-like structure is observed. The reactant gas may have to diffuse evenly in the catalyst layer. (C) 1999 Elsevier Science S.A. All rights reserved.