282 resultados para SPIN ALIGNMENT
Resumo:
A series of liquid crystalline copolymers, poly{2-hydroxyethyl methacrylate}-co-{6-[4-(S-2-methyl-1-butyloxycarbonylphenylazo)phenoxy]hexyl methacrylate} with an azobenzene moiety as photoreactive mesogenic unit, was prepared and investigated by using DSC, polarized optical microscopy and X-ray diffraction. The results show that these polymers exhibit smectic phases. Z-type Langmuir-Blodgett films of these copolymers were successfully deposited onto calcium fluoride and quartz. Reversible homeotropic and planar liquid crystal alignments were induced by using the photochromism of the LB films of one of the copolymers containing 20.6 mol % of the azo unit.
Resumo:
The ESR of PPy films doped with Co (W2O7)(6)(10-) and CuW12O406- ions were reported and discussed. Results show that heteropolyanions not only play the role of neutralizing electricity in the PPy film, but also interact with the PPy molecular chain to form some adducts. The adducts affect the electronic structure of the PPy film and are unstable at more positive or more negative potentials. Dysonian ESR lineshape was recorded for the dry PPy film with CuW12O406- for the first time.
Resumo:
The effects of mechanical alloying on the solubility in a Ag-Gd solid solution have been investigated. The study shows that the solubility of Gd in Ag can be extended to about 5 at. % Gd by mechanical alloying from the equilibrium solubility of less than 0.95 at. % Gd. Ag85Gd15 prepared by mechanical alloying exhibits a spin-glass-type transition at similar to 5 K. A Curie-Weiss behavior at higher temperatures and x-ray patterns of the material indicate that Gd atoms are either dissolved in the Ag matrix or in the form of small clusters of diameters of a few nanometers;
Resumo:
On the basis of the spin and valence state equilibria and superexchange interaction of the various cobalt ions in LaCoO3, an approximate semiempirical formula has been proposed and used to calculate magnetic susceptibilities of LaCoO3 over a wide temperature range (100-1200 K). The results indicate that there are thermodynamic equilibria between the low spin state Co(III) (t2g6e(g)0) ion, the high spin state Co3+ (t2g4e(g)2) ion, the Co(II) (t2g6e(g)1) ion and the Co(IV) (t2g5e(g)0) ion in LaCoO3. The energy difference between the low spin state Co(III) and the high spin state Co3+ is about 0.006 eV. The content of the low spin state Co(III) ion is predominant in LaCoO3 and the content of the high spin state Co3+ ion varies with temperature, reaching a maximum at about 350 K, then decreasing gradually with increasing temperature. At low temperature the contents of the Co(II) ion and the Co(IV) ion in LaCoO3 are negligible, while above 200 K the contents of both the Co(II) ion and the Co(IV) ion increase with increasing temperature; however, the content of the Co(II) ion always is larger than that of the Co(IV) ion at any temperature. These calculated results are in good agreement with experimental results of the Mossbauer effect, magnetic susceptibility and electrical conductivity of LaCoO3.
Resumo:
This payer presents a concrete theoretical treatment which can be used for transforming the laser-induced fluorescence (LIF) intensity into the population and alignment parameters of a symmetric top molecule, The molecular population and alignment are described by molecular state multipoles. The results are presented in a general excitation-detection geometry and then specialized in some special geometries. The problem how to extract the initial molecular state multipoles from the rotationally resolved LIF intensity is discussed in detail. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
General expressions used for transforming raw laser-induced fluorescence (LIF) intensity into the population and alignment parameters of a symmetric top molecule are derived by employing the density matrix approach. The molecular population and alignment are described by molecular state multipoles. The results are presented for a general excitation-detection geometry and then applied to some special geometries. In general cases, the LIF intensity is a complex function of the initial molecular state multipoles, the dynamic factors and the excitation-detection geometrical factors. It contains a population and 14 alignment multipoles. How to extract all initial state multipoles from the rotationally unresolved emission LIF intensity is discussed in detail.
Resumo:
General expressions used for extracting the orientation and alignment parameters of a symmetric top molecule from laser-induced fluorescence (LIF) intensity are derived by employing the density matrix approach. The molecular orientation and alignment are described by molecular state multipoles. Excitation and detection are circularly and linearly polarized lights, respectively. In general cases, the LIF intensity is a complex function of the initial molecular state multipoles, the dynamic factors and the excitation-detection geometrical factors. It contains a population, ten orientation and fourteen alignment multipoles. The problem of how to extract the initial molecular state multipoles from the resolved LIF intensity is discussed.
Resumo:
Expressions used for extracting the population and alignment parameters of a symmetric top molecule from (n + 1) laser-induced fluorescence (LIF) are derived by employing the tensor density matrix method. The molecular population and alignment are described by molecular state multipoles. The LIF intensity is a complex function of the initial molecular state multipoles, the dynamic factors, and the excitation-detection geometrical factors. The problem of how to extract the initial molecular state multipoles from (2 + 1) LIF, as an example, is discussed in detail. (C) 2000 American Institute of Physics. [S0021-9606(00)30744-9].