315 resultados para Metal-based catalysts


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The copolymerizations of ethylene with polar hydroxyl monomers such as 10-undecen-1-ol, 5-hexen-1-ol and 3-buten-1-ol were investigated by the vanadium(III) catalysts bearing bidentate [N,O] ligands (1, [PhN=C(CH3)CHC(Ph)O]VCl2(THF)(2): 2, [PhN=CHC6H4O]VCl2(THF)(2); 3, [PhN=CHC(Ph)CHO]VCl2(THF)(2)). The polar monomers were pretreated by alkylaluminum before the polymerization. High catalytic activities and efficient comonomer incorporations can be easily obtained by changing monomer masking reagents and polymerization conditions in the presence of diethylaluminium chloride as a cocatalyst. The longer the spacer group, the higher the incorporation of the monomer. Under the mild conditions, the incorporation level of 10-undecen-1-ol reached 13.9 mol% in the resultant copolymers was obtained. The reactivity ratios of copolymerization (r(1) = 41.4, r(2) = 0.02, r(1)r(2) = 0.83) were evaluated by Fineman-Ross method. According to C-13 NMR spectra, polar units were located both on the main chain and at the chain end.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce a fast and simple method, named the potentiostatic electrodeposition technique, to deposit metal particles on the planar surface for application in metal-enhanced fluorescence. The as-prepared metallic surfaces were comprised of silver nanostructures and displayed a relatively homogeneous morphology. Atomic force microscopy and UV-visible absorption spectroscopy were used to characterize the growth process of the silver nanostructures on the indium tin oxide (ITO) surfaces. A typical 20-fold enhancement in the intensity of a nearby fluorophore, [Ru(bpy)(3)](2+), could be achieved on the silvered surfaces. In addition, the photostability of [Ru(bpy)(3)](2+) was found to be greatly increased due to the modification of the radiative decay rate of the fluorophore. It is expected that this electrochemical approach to fabricating nanostructured metallic surfaces can be further utilized in enhanced fluorescence-based applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mercury ion (Hg2+) is able to specifically bind to the thymine-thymine (T-T) base pair in a DNA duplex, thus providing a rationale for DNA-based selective detection of Hg2+ with various means. In this work, we for the first time utilize the Hg2+-mediated T-T base pair to modulate the proper folding of G-quadruplex DNAs and inhibit the DNAzyme activity, thereby pioneering a facile approach to sense Hg2+ with colorimetry. Two bimolecular DNA G-quadruplexes containing many T residues are adopted here, which function well in low- and high-salt conditions, respectively. These G-quadruplex DNAs are able to bind hemin to form the peroxidase-like DNAzymes in the folded state. Upon addition of Hg2+, the proper folding of G-quadruplex DNAs is inhibited due to the formation of T-Hg2+-T complex. Ibis is reflected by the notable change of the Soret band of hemin when investigated by using UV-vis absorption spectroscopy. As a result of Hg2+ inhibition, a sharp decrease in the catalytic activity toward the H2O2-mediated oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)diammonium salt (ABTS) is observed, accompanied by a change in solution color. Through this approach, aqueous Hg2+ can be detected at 50 nM (10 ppb) with colorimetry in a facile way, with high selectivity against other metal ions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we have reported a very simple strategy (combined sonication with sol-gel techniques) for synthesizing well-defined silica-coated carbon nanotube (CNT) coaxial nanocable without prior CNT functionalization. After functionalization with NH2 group, the CNT/silica coaxial nanocable has been employed as a three-dimensional support for loading ultra-high-density metal or hybrid nanoparticles (NPs) such as gold NPs, Au/Pt hybrid NPs, Pt hollow NPs, and Au/Ag core/shell NPs. Most importantly, it is found that the ultra-high-density Au/Pt NPs supported on coaxial nanocables (UASCN) could be used as enhanced materials for constructing electrochemical devices with high performance. Four model probe molecules (O-2, CH3OH, H2O2, and NH2NH2) have been investigated on UASCN-modified glassy carbon electrode (GCE). It was observed that the present UASCN exhibited high electrocatalytic activity toward diverse molecules and was a promising electrocatalyst for constructing electrochemical devices with high performance. For instance, the detection limit for H2O2 with a signal-to-noise ratio of 3 was found to be 0.3 mu M, which was lower than certain enzyme-based biosensors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasing worldwide demand for carbon nanotubes (CNTs) and increasing concern regarding how to safely develop and use CNTs are requiring a low-cost, simple, and highly sensitive CNT detection assay for toxicological evaluation and environmental monitoring. However, this goal is still far from being achieved. All the current CNT detection techniques are not,applicable for automation and field analysis because they are dependent on highly expensive special instruments and complicated sample preparation. On the basis of the capability of single-walled carbon nanotubes (SWNTs) to specifically induce human telomeric i-motif formation, we design an electrochemical DNA (E-DNA) sensor that can distinguish single- and multiwalled carbon nanotubes both in buffer and in cell extracts. The E-DNA sensor can selectively detect SWNTs; with a direct detection limit of 0.2 ppm and has been demonstrated in cancer cell extracts. To the best of our knowledge, this is the first demonstration of a biosensing technique that can distinguish different types of nanotubes. Our work will provide new insights into how to design a biosensor for detection of carbon nanotubes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the implications of a pellet experiment,we have designed and implemented a low temperature(≤90℃) approach to generate native patterned,vertically aligned ZnO nanoarrys without any templates or catalysts.This simple,economic and spontaneous patterning process offers a promising avenue for overcoming several inherent limitations of the artificial manners[1].While the purity,orientation and electrical properties of the as prepared materials allow them to be applied in various fields.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A solution-phase approach to synthesize four kinds of mixed-valence, transition metal compounds nanotube is described. The approach is based on the self-assembly of siloxane sol. The resulted production of mixed-valence, transition metal compounds share a common structural characteristic of tubular geometrical morphology, at least for the ones we studied. The results demonstrate that the synthesis strategy can be a general route for preparation of compound nanotubes. In addition, the size control of nanotubular materials can be easily achieved through varying the ionic strength of solution. Based on the strategy, the diameters of ultrathin Ru-Fe nanotubes can be easily tuned between 100 nm and 800 nm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate extremely stable and highly efficient organic light-emitting diodes (OLEDs) based on molybdenum oxide (MoO3) as a buffer layer on indium tin oxide (ITO). The significant features of MoO3 as a buffer layer are that the OLEDs show low operational voltage, high electroluminescence (EL) efficiency and good stability in a wide range of MoO3 thickness. A green OLED with structure of ITO/MoO3/N,N-'-di(naphthalene-1-yl)-N,N-'-diphenyl-benzidene (NPB)/NPB: tris(8-hydroxyquinoline) aluminum (Alq(3)):10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H, 5H, 11H-(1)-benzopyropyrano(6,7-8-i,j)quinolizin-11-one (C545T)/Alq(3)/LiF/Al shows a long lifetime of over 50 000 h at 100 cd/m(2) initial luminance, and the power efficiency reaches 15 lm/W. The turn-on voltage is 2.4 V, and the operational voltage at 1000 cd/m(2) luminance is only 6.9 V. The significant enhancement of the EL performance is attributed to the improvement of hole injection and interface stability at anode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The activity and selectivity of the transition metal complexes formed from Ru, Rh, Pd and Ni with triphenylphosphine (TPP) have been investigated for hydrogenation of citral in supercritical carbon dioxide (scCO(2)). High activities are obtained with Ru/TPP and Pd/TPP catalysts, and the overall activity is in the order of Pd approximate to Ru > Rh > Ni. The Ru/TPP complex is highly selective to the formation of unsaturated alcohols of geraniol and nerol. In contrast, the Pd/TPP catalyst is more selective to partially saturated aldehydes of citronellal. Furthermore, the influence of several parameters such as CO2 and H-2 pressures, N-2 pressure and reaction time has been discussed. CO2 pressure has a significant impact on the product distribution, and the selectivity for geraniol and nerol can be enhanced from 27% to 75% with increasing CO2 pressure from 6 to 16 MPa, while the selectivity for citronellol decreases from 70% to 20%. Striking changes in the conversion and product distribution in scCO(2) could be interpreted with variations in the phase behavior and the molecular interaction between CO2 and the substrate in the gas phase and in the liquid phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new electrocatalysis of carbon materials for oxygen reduction reaction (ORR) on Pt/C catalysts was discovered. It was found that there exist two kinds of electroactive sites on these supports of carbon materials, which can effectively electrocatalyze the reduction of peroxide intermediated from oxygen reduction on Pt, as this provides continuous driving force to move the equilibrium toward the production of peroxide from ORR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, five Pt3Sn1/C catalysts have been prepared using three different methods. It was found that phosphorus deposited on the surface of carbon with Pt and Sn when sodium hypophosphite was used as reducing agent by optimization of synthetic conditions such as pH in the synthetic solution and temperature. The deposition of phosphorus should be effective on the size reduction and markedly reduces PtSn nanoparticle size, and raise electrochemical active surface (EAS) area of catalyst and improve the catalytic performance. TEM images show PtSnP nanoparticles are highly dispersed on the carbon surface with average diameters of 2 nm. The optimum composition is Pt3Sn1P2/C (note PtSn/C-3) catalyst in my work. With this composition, it shows very high activity for the electrooxidation of ethanol and exhibit enhanced performance compared with other two Pt3Sn1/C catalysts that prepared using ethylene glycol reduction method (note PtSn/C-EG) and borohydride reduction method (note PtSn/-B). The maximum power densities of direct ethanol fuel cell (DEFC) were 61 mW cm(-2) that is 150 and 170% higher than that of the PtSn/C-EG and PtSn/C-B catalyst.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By introducing the flexible 1,1'-(1,4-butanediyl)bis(imidazole) (bbi) ligand into the polyoxovanadate system, five novel polyoxoanion-templated architectures based on [As8V14O42](4-) and [V16O38Cl](6-) building blocks were obtained: [M(bbi)(2)](2)[As8V14O42(H2O)] [M = Co (1), Ni (2), and Zn (3)], [Cu(bbi)](4)[As8V14O42(H2O)] (4), and [Cu(bbi)](6)[V16O38Cl] (5). Compounds 1-3 are isostructural, and they exhibit a binodal (4,6)-connected 2D structure with Schlafli symbol (3(4)center dot 4(2))(3(4)center dot 4(4)center dot 5(4)center dot 6(3))(2), in which the polyoxoanion induces a closed four-membered circuit of M-4(bbi)(4). Compound 4 exhibits an interesting 3D framework constructed from tetradentate [As8V14O42](4-) cluster anions and cationic ladderlike double chains. There exists a bigger M-8(bbi)(6)O-2 circuit in 4. The 3D extended structure of 5 is composed of heptadentate [V16O38Cl](6-) anions and flexural cationic chains; the latter consists of six Cu(bbi) segments arranged alternately. It presents the largest 24-membered circuit of M-24(bbi)(24) so far observed made of bbi molecules and transition-metal cations. Investigation of their structural relations shows the important template role of the polyoxoanions and the synergetic interactions among the polyoxoanions, transition-metal ions, and flexible ligand in the assembly process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel room temperature ionic liquid (RTIL) has been prepared containing a cyclic hexaalkylguanidinium cation. The selective oxidation of a series of substituted benzyl alcohols has been carried out in it, with sodium hypochlorite as the oxidant. The RTIL acts as both phase transfer catalyst (PTC) and solvent. The ionic liquid could be recycled after extraction of the benzaldehyde product with ether.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complexes [Cu(dnpb)(DPEphos)](+)(X-) (dnpb and DPEphos are 2,9-di-n-butyl-1,10-phenanthroline and bis[2-(diphenyl-phosphino)phenyl]ether, respectively, and X- is BF4-, ClO4-, or PF6-) can form high quality films with photoluminescence quantum yields of up to 71 +/- 7%. Their electroluminescent properties are studied using the device-structure indium tin oxide (ITO)/complex/metal cathiode. The devices emit green light efficiently, with an emission maximum of 523 nm, and work in the mode of light-emitting electrochemical cells. The response time of the devices greatly depends on the driving voltage, the counterions, and the thickness of the complex film. After pre-biasing at 25 V for 40 s, the devices turn on instantly, with a turn-on voltage of ca. 2.9 V. A current efficiency of 56 cd A(-1) and an external quantum efficiency of 16% are realised with Al as the cathode. Using a low-work-function metal as the cathode can significantly enhance the brightness of the device almost without affecting the turn-on voltage and current efficiency. With a Ca cathode, a brightness of 150 cd m(-2) at 6 V and 4100 cd m(-2) at 25 V is demonstrated. The electroluminescent performance of these types of complexes is among the best so far for transition metal complexes with counterions.