354 resultados para Indium hydroxide
Resumo:
Porous SnO2 and SnO2-Eu3+ nanorods have been facilely prepared using triphenyltin hydroxide microrods as precursors. The porous structure of SnO2 nanorods, which was aggregated by small SnO2 nanocrystallites, has been confirmed by TEM images and nitrogen adsorption-desorption isotherms. The optical property of the porous SnO2-Eu3+ nanorods was investigated by UV-vis absorption and photoluminescence spectra.
Resumo:
A new strategy for preparing ammonium-type ionic liquid (IL) by acid/base neutralization reaction was proposed. The method contributed to preparing hydroxide-based ammonium IL and resulting task specific ionic liquid (TSIL) with high purity using a low-costly and environment-friendly synthetic. route. Halide contamination in the prepared ILs could be markedly decreased than those prepared by well-established anion metathesis method. Moreover, some novel TSILs composed of cations and anions with big steric hindrances could be prepared by this method. Physicochemical properties of the bifunctional TSILs, i.e., density, water content, decomposition temperature, and munal solubility, were also studied in this article.
Resumo:
A new bisphenol monomer, 2,2'-dimethylaminemetllylene-4,4'-biphenol (DABP), was easily prepared by Mannich reaction of dimethylamine and formaldehyde with 4,4'-biphenol. Novel partially fluorinated poly(arylene ether sulfone)s with pendant quaternary ammonium groups were prepared by copolymerization of DABP, 4,4'-biphenol, and 3,3',4,4'- tetrafluorodiphenylsulfone, followed by reaction with iodomethane. The resulting copolymers PSQNI-x (where x represents the molar fraction of DABP in the feed) with high molecular weight exhibited outstanding solubility in polar aprotic solvents; thus, the flexible and tough membranes of PSQNI-x with varying ionic content could be prepared by casting from the DMAc solution. Novel anion exchange membranes, PSQNOH-x, were obtained by an anion exchange of PSQNI-x with 1 N NaOH.
Resumo:
Four transition-metal-amine complexes incorporating indium thioarsenates with the general formula M(tren)InAsS4 (M=Mn, Co, and Zn) and a noncondensed AsS33- unit have been prepared and characterized. Single-crystal X-ray diffraction analyses show that compound 1 (M=Mn) crystallizes in the triclinic crystal system (space group: P (1) over bar) and consists of a one-dimensional (1D) inorganic (1)(infinity){[InAsS4](2-)} chain and [Mn(tren)](2+) groups bonded to the opposite sides of an eight-membered In2As2S4 ring along the backbone of the infinite inorganic chains. Compounds 2 (M=Mn), 3 (M=Zn), and 4 (M=Co) are isomorphous molecular compounds. They all crystallize in the monoclinic crystal system (space group: P2(1)/c). The Mn2+ cation of [Mn(tren)](2+) in 1 has a distorted octahedral environment, while the transition-metal cations of [M(tren)](2+) in the other three compounds locate in trigonal-bipyramidal environments.
Resumo:
Three-dimensional flowerlike Lu2O3 and Lu2O3:Ln(3+) (Ln = Eu, Th, Dy, Pr, Sm, Er, Ho, Tm) microarchitectures have been successfully synthesized via ethylene glycol (EG)-mediated hydrothermal method followed by a subsequent heat treatment process. X-ray diffraction, Fourier transform infrared spectroscopy, energy-dispersive X-ray spectra, thermogravimetric and differential thermal analysis, elemental analysis, inductively coupled plasma atomic absorption spectrometric analysis, ion chromatogram analysis, X-ray photoelectron spectra, scanning electron microscopy, transmission electron microscopy, photoluminescence spectra as well kinetic decays, and cathodoluminescence spectra were used to characterize the samples. Hydrothermal temperature, EG, and CH3COONa play critical roles in the formation of the lutetium oxide precursor microflowers. The reaction mechanism and the self-assembly evolution process have been proposed. The as-formed lutetium oxide precursor could transform to Lu2O3 With their original flowerlike morphology and slight shrinkage in the size after postannealing process.
Resumo:
Nearly monodisperse and well-defined one-dimensional (1D) Gd2O3:Eu3+ nanorods and microrods were successfully prepared through a large-scale and facile hydrothermal method followed by a subsequent heat treatment process, without using any catalyst or template. X-ray diffraction (XRD), thermogravimetric analysis and differential scanning calorimetry (TGA-DSC), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), photoluminescence (PL) and cathodoluminescence (CL) spectra as well as kinetic decays were used to characterize the samples. The size of the Gd2O3:Eu3+ rods could be modulated from micro- to nanoscale with the increase of pH value using ammonia solution. The as-formed product via the hydrothermal process, Gd(OH)(3):Eu3+, could transform to cubic Gd2O3:Eu3+ with the same morphology and a slight shrinking in size after a postannealing process.
Resumo:
An effective electrochemiluminescence (ECL) sensor based on Nafion/poly(sodium 4-styrene sulfonate) (PSS) composite film-modified ITO electrode was developed. The Nafion/PSS/Ru composite film was characterized by atomic force microscopy, UV-vis absorbance spectroscopy and electrochemical experiments. The Nafion/PSS composite film could effectively immobilize tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)(3)(2+)) via ion-exchange and electrostatic interaction. The ECL behavior of Ru(bpy)(3)(2+) immobilized in Nafion/PSS composite film was investigated using tripropylamine (TPA) as an analyte. The detection limit (S/N = 3) for TPA at the Nafion/PSS/Ru composite-modified electrode was estimated to be 3.0 nM, which is 3 orders of magnitude lower than that obtained at the Nafion/Ru modified electrode. The Nafion/PSS/Ru composite film-modified indium tin oxide (ITO) electrode also exhibited good ECL stability. In addition, this kind of immobilization approach was simple, effective, and timesaving.
Resumo:
We have observed, respectively, a negative differential resistance (NDR) and switching conduction in current-voltage (I-V) characteristics of organic diodes based on copper phthalocyanine (CuPc) film sandwiched between indium-tin-oxide (ITO) and aluminum (Al) by controlling the evaporation rate. The NDR effect is repeatable which can be well, controlled by sweep rate and start voltage, and the switching exhibits write-once-read-many-times (WORM) memory characteristics. The traps in the organic layer and interfacial dipole have been used to explain the NDR effect and switching conduction. This opens up potential applications for CuPc organic semiconductor in low power memory and logic circuits.
Resumo:
A random lasing emission from 4-(dicy-anomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) doped polystyrene (PS) thin films was realized by the scattering role of ZnO nanorods. The device was fabricated by spin-coating DCJTB doped PS on ZnO nanorods. The ZnO nanorods were grown on indium-tin-oxide (ITO) glass substrate by hydrothermal synthesis method. It can be seen that the device emits a resonance multimode peak at center wavelength of 630 nm with a mode line-width of less than 0.23 nm and exhibits threshold excitation intensity as low as 0.375 mJ pulse(-1) cm(-2). The agreement of the dependence of threshold pumped intensity on the excitation area with the random laser theory indicates that the lasing emission realized here is random laser. Our results demonstrate that the nanostructured ZnO nanorods are promising candidate as alternative sources of coherent light emission to realize organic lasers.
Resumo:
A highly efficient and colour-stable three-wavelength white organic light-emitting diode with the structure of indium tin oxide (ITO)/MoO3/N,N'-diphenyl-N,N'-bis (1-naphthylphenyl)-1,1'-biphenyl-4,4'-diamine (NPB)/4,4'-N,N'-dicarbazole-biphenyl (CBP): bis(2,4-diphenylquinolyl-N,C-2') iridium( acetylacetonate) (PPQ)(2)Ir(acac)/NPB/p-bis(p-N,N-diphenyl-aminostyryl)benzene (DSA-Ph):2-methyl-9,10-di(2-naphthyl) anthracene (MADN)/tris (8-hydroxyquinoline) aluminum (AlQ): 10-(2-Benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H,5H,11H-(1)-benzopyropyrano(6,7-8-i,j)quinolizin-11-one (C545T)/AlQ/LiF/Al is fabricated and characterized. A current efficiency of 12.3 cdA(-1) at an illumination-relevant brightness of 1000 cd m(-2) is obtained, which rolls off slightly to 10.3 cdA(-1) at a rather high brightness of 10 000 cd m(-2). We attribute this great reduction in the efficiency roll-off to the wise management of singlet and triplet excitons between emissive layers as well as the superior charge injection and diffusion balance in the device.
Resumo:
We have found that organic light-emitting diode (OLED) performance was highly improved by using europium oxide (Eu2O3) as a buffer layer on indium tin oxide (ITO) in OLEDs based on tris-(8-hydroxyquinoline) aluminium (Alq(3)), which showed low turn-on voltage, high luminance, and high electroluminescent (EL) efficiency. The thickness of Eu2O3 generally was 0.5-1.5 nm. We investigated the effects of Eu2O3 on internal electric field distributions in the device through the analysis of current-voltage characteristics, and found that the introduction of the buffer layer balanced the internal electric field distributions in hole transport layer (HTL) and electron transport layer (ETL), which should fully explain the role of the buffer layer in improving device performance. Our investigation demonstrates that the hole injection is Fowler-Nordheim (FN) tunnelling and the electron injection is Richardson-Schottky (RS) thermionic emission, which are very significant in understanding the operational mechanism and improving the performance, of OLEDs.
Resumo:
Uniform Gd(OH)(3) nanotubes have been prepared via a simple wet-chemical route at ambient pressure and low temperature, without any catalysts, templates, or substrates, in which Gd(NO3)(3) was used as the gallium source and ammonia as the alkali. SEM and TEM images indicate that the as-obtained Gd(OH)3 entirely consists of uniform nanotubes in high yield with diameters of about 40 nm and lengths of 200-300 nm. The temperature-dependent morphological evolution and the formation mechanism of the Gd(OH)(3) nanotubes were investigated in detail. Furthermore, the Gd2O3 and Eu3+-doped Gd2O3 nanotubes, which inherit their parents' morphology, were obtained during a direct annealing process in air. The corresponding Gd2O3:Eu3+ nanotubes exhibit the strong red emission corresponding to the D-5(0)-F-7(2), transition of the Eu3+ ions under UV light or low-voltage electron beam excitation, which might find potential applications in the fields such as light-emitting phosphors, advanced flat panel displays, or biological labeling.
Resumo:
Uniform Lu2O3:Eu3+ nanorods and nanowires have been successfully prepared through a simple solution-based hydrothermal process followed by a subsequent calcination process without using any surfactant, catalyst, or template. On the basis of X-ray diffraction, thermogravimetric analysis and differential scanning calorimetry, and Fourier transform infrared spectroscopy results, it can be assumed that the as-obtained precursors have the structure formula of Lu4O(OH)(9)(NO3), which is a new phase and has not been reported. The morphology of the precursors could be modulated from nanorods to nanowires with the increase of pH value using ammonia solution. The as-formed precursors could transform to cubic Lu2O3:Eu3+ with the same morphology and a slight shrinkage in size after an annealing process, Both the Lu2O3:Eu3+ nanorods and nanowires exhibit the strong red emission corresponding to the D-5(0)-F-7(2) transition of the Eu3+ ions under UV light excitation or low-voltage electron beam excitation.
Resumo:
An efficient and divergent one-pot synthesis of substituted 2H-pyrans, 4H-pyrans and pyridin-2(1H)-ones from beta-oxo amides based on the selection of the reaction conditions is reported. Mediated by N,N,N',N'-tetramethylchloroformamidinium chloride, beta-oxo amides underwent intermolecular cyclizations in the presence of triethylamine at room temperature to give substituted 2H-pyrans in high yields, which could be converted into substituted 4H-pyrans in the presence of sodium hydroxide in ethanol at room temperature, or into substituted pyridin-2(1H)-ones under reflux.
Resumo:
We introduce a fast and simple method, named the potentiostatic electrodeposition technique, to deposit metal particles on the planar surface for application in metal-enhanced fluorescence. The as-prepared metallic surfaces were comprised of silver nanostructures and displayed a relatively homogeneous morphology. Atomic force microscopy and UV-visible absorption spectroscopy were used to characterize the growth process of the silver nanostructures on the indium tin oxide (ITO) surfaces. A typical 20-fold enhancement in the intensity of a nearby fluorophore, [Ru(bpy)(3)](2+), could be achieved on the silvered surfaces. In addition, the photostability of [Ru(bpy)(3)](2+) was found to be greatly increased due to the modification of the radiative decay rate of the fluorophore. It is expected that this electrochemical approach to fabricating nanostructured metallic surfaces can be further utilized in enhanced fluorescence-based applications.