383 resultados para DOPED CAF2 CRYSTALS
Resumo:
Low loss index enhanced planar waveguides in Nd3+-doped silicate glass were fabricated by 3.0 MeV C+ ion implantation. The enhancement of the refractive index confined the light propagating in the waveguide. The prism-coupling method was used to measure dark modes in the waveguide. The effective refractive indices of the waveguide were obtained based on the dark modes. The moving fiber method was applied to measure the waveguide propagation loss. Loss measured in non-annealed samples is about 0.6 dB/cm. And the waveguide mode optical near-field output at 633 nm was presented. (c) 2005 Elsevier B.V. All rights reserved.
Characterization of Er3+-doped Na2O-WO3-TeO2 glass for ion-exchanged waveguide amplifiers and lasers
Resumo:
Er^(3+)-doped Na2O-WO3-TeO2 glass consistent with standard ion-exchange technology has been fabricated and characterized. The measured absorption and emission spectra of the glass were analyzed by the Judd-Ofelt and McCumber theories. The intensity parameters are Ω2 = 7.01
Resumo:
We report spectral properties and thermal stability of Nd3+-doped InF3-based heavy-metal fluoride glasses. Fluoroindate glasses in the chemical compositions (in mol%) of (38-x)InF3-16BaF(2)-20ZnF(2)-20SrF(2)-3GdF(3)-1GaF(3-)2NaF-xNdF(3) (x = 0.1, 0.5, 1, 2, 3) have been prepared under a controlled atmosphere in a dry box. Strong UVblue upconversion emission from a green excitation wavelength has been observed and the involved mechanisms have been explained. Near-infrared emission occurs simultaneously upon excitation of the UV-blue upconversion emissions with a cw Ar(+)laser. The upconversion spectra have revealed four dominant emissions at 354, 380, 412 and 449 nm, which belong to the transitions of D-4(3/2) -> I-4(9/2), D-4(3/2) -> I-4(11/2) and P-2(3/2) -> I-4(9/2), D-4(3/2) -> I-4(13/2) and P-2(3/2) -> I-4(11/2), D-4(3/2) -> I-4(15/2) and P-2(3/2) -> I-4(13/2), respectively.
Resumo:
A waveguide amplifier is fabricated by Ag+-Na+ two-step ion exchange on Er/Yb-doped phosphate glass. The spectroscopic performance of glass and the properties of channel waveguide are characterized. A double-pass configuration is adopted to measure the gain and noise figure (NF) of the waveguide amplifier, and the comparison of gain and NF for the single and double-pass configuration of the waveguide amplifier is presented. The results show that the double-pass configuration can make the gain increase from 8.8dB (net gain 2.2dB/cm) of the single-pass one to 14.6 dB (net gain 3.65 dB/cm) for small input power at 1534 nm, and the NF are all lower than 5.5dB for both the configurations.
Resumo:
The influence of TeO2 on the crystallization stability, thermal stability, spectroscopic and lasing properties of Yb3+ doped fluorophosphate (FP) glass was studied. It is shown that 2 mol% TeO2 is the optimum doping amount which results in better spectroscopic and lasing properties as well as improve the crystallization and thermal stabilities of the glass. In order to enhance the physical and optical properties further, the effect of PbF2 and ZnF2 to the TeO2 contained FP glasses is also investigated, which shows that PbF2 has advantages in improving the crystallization properties while ZnF2 is preferable in enhancing spectroscopic and lasing properties. Results indicate that the co-existence of TeO2, PbF2 or ZnF2 is an effective way to enhance the spectroscopic, lasing and physical properties of Yb3+ doped FP glasses. (c) 2004 Published by Elsevier B.V.
Resumo:
this paper was retracted
Resumo:
Er3+-doped TeO2-BaO (Li2O, Na2O)-La2O3 tellurite glass system was prepared and their density, characteristic temperatures and optical properties were determined and investigated. For the TeO2-BaO-La2O3-Er2O3 system, composition with 10 mol% BaO presented the highest thermal stability and good infrared transmittance. Intense and broad 1.53 mu m infrared fluorescence were observed under 977 nm diode laser excitation and the most full width at half-maximum (FWHM) is similar to 60nm. According to absorption spectrum, we calculated the optical parameters by means of Judd-Ofelt and McCumber theory such as the fluorescence lifetimes which are about 2.72-3.25 ms and the maximum emission cross-sections which are similar to 1.0pm(2) at 1.531 mu m. The sigma(e) x FWHM value of composition with 10 mol% BaO for gain bandwidth is similar to 600 exceeding those in silicon and phosphate glasses. Our results indicated this kind of tellurite glasses could be used as an ideal host glass for optical amplifier. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Tellurite glass is proposed as a host for broadband erbium-doped fiber amplifiers because of their excellent optical and chemical properties. A single-mode Er3+-doped tellurite glass fiber with D-shape cladding was fabricated in this work. The characterization of amplified spontaneous emission (ASE) from this newly fabricated Er3+-doped tellurite fibers are exhibited. When pumped at 980 nm, a very broad erbium ASE nearly 150 nm around 1.53 mum is observed. The changes in ASE with regard to fiber lengths and pumping power were measured and discussed. The output of 2 mW from Er3+-doped tellurite fiber ASE source was obtained under the pump power of 660 mW. The broad 1.53 mum emission of Er3+ in tellurite glass fiber can be used as host material for potential broadband optical amplifier and tunable fiber lasers. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The spectroscopic and fluorescent decay behaviors of Yb3+-doped SiO2-PbO-Na2O-K2O glass is reported in this work. Yb2O3 contents of 1, 1.5 and 2mol% are added into the glass. Through the measurement of absorption and fluorescence spectra, and fluorescent decay rate at room temperature and at low temperature (18 K), it is found that the nonradiative decay rate of Yb3+ ions is mainly determined by the interaction between residual hydroxyl groups and Yb3+ ions. Concentration quenching effect can be omitted in this glass up to the Yb3+ ion concentration of 8.98 x 10(20)/cm(3). Multiphonon decay rate is also very small because of the large energy gap between F-2(5/2) and F-2(7/2) levels of Yb3+ ions. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
This paper reports on the optical spectroscopic properties and thermal stability of Er3+-doped TeO2-BaO (Li2O,NaO)-La2O3 glasses for developing 1.5-mu m fiber amplifiers. Upon excitation at 977 nm laser diode, an intense 1.53-mu m infrared fluorescence has been observed with a broad full width at half maximum (FWHM) of about 60 nm for the Er3+-doped TeO2-BaO (Li2O, Na2O)-La2O3 glass with 10 mol% of BaO. The calculated fluorescence lifetime and the emission cross-sections of the 1.53-mu m transition are 2.91 ms and similar to 9.97 x 10(-21) cm(2), respectively. It is noted that the gain bandwidth, a, x FWHM, of the TeO2-BaO-La2O3Er2O3 glass is about 600, which is significantly higher than that in silicate and phosphate glasses. Meanwhile, it is interesting to note that the TeO2-BaO-La2O3-Er2O3 glass has shown a high glass thermal stability and good infrared transmittance. As a result, TeO2-BaO (Li2O, Na2O)-La2O3 glass with 10 mol% of BaO has been considered to be more useful as a host for broadband optical fiber amplifier. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
this paper is retracted
Resumo:
Near-infrared to visible upconversion luminescence was observed in a multicomponent silicate (BK7) glass containing Ce3+ ions under focused infrared femtosecond laser irradiation. The emission spectra show that the upconversion luminescence comes from the 4f-5d transition of the Ce3+ ions. The relationship between the intensity of the Ce3+ emission and the pump power reveals that a three-photon absorption predominates in the conversion process from the near-infrared into the blue luminescence. The analysis of the upconversion mechanism suggests that the upconversion luminescence may come from a three-photon simultaneous absorption that leads to a population of the 5d level in which the characteristic luminescence occurs.
Resumo:
The absorption spectra, emission spectra and infrared spectra of Er3+/Yb3+ co-doped xBi(2)O(3)-(65 - x)P2O5-4Yb(2)O(3)-11Al(2)O(3)-5BaO-15Na(2)O were measured and investigated. Spontaneous emission probability, radiative lifetime and branching ratios of Er3+ were calculated according to the Judd-Ofelt theory. The role of substitution of Bi2O3 for P2O5 on luminescence of Er3+/Yb3+ co-doped aluminophosphate glasses has been investigated. The calculated radiative lifetimes (tau(rad)) for I-4(13/2) and I-4(11/2) were decreasing with Bi2O3 content increases, whereas the measured total lifetime (tau(meas)) for I-4(13/2) showed linearly increasing trends. The effect of Bi2O3 introduction on OH- groups was also discussed according to the IR transmittance spectra of glasses. It was found that FWHM of glasses were not affected with the substitution of Bi2O3 for P2O5. The emission spectra intensity increased with Bi2O3 content due to the decreases of phonon energy and OH- content in glasses. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A series of tellurite glasses of composition, 75TeO(2)-20ZnO-(5 - x)La2O3-xEr(2)O(3) (x = 0.05, 0.1, 0.3, 0.6, 1.0, 2.0, and 3.0 mol%) with different hydroxl content were prepared. The effect of Er3+ and OH- groups concentration on the emission properties of Er3+: I-4(13/2) -> I-4(15/2) transition in tellurite glasses was investigated. The constant KOH-Er for Er3+ in tellurite glasses, which represents the strength of interaction between Er3+ and OH- groups in the case of energy migration, was about 14 x 10(-19) cm(4) s(-1). The interaction parameter C-Er,C-Er for the migration rate of Er3+ : 4I(13/2) -> I-4(13/2) transition in tellurite glass was 46 x 10(-40) cm(2), which indicates that concentration quenching in Er3+-doped modified tellurite glass for a given Er3+ concentration is much stronger than in silicate and phosphate glasses. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Photoluminescence of undoped and B-doped ZnO in silicate glasses was investigated by varying the concentration of ZnO (3550 mol%) and B dopant (0-10 mol%) in the glass matrices. The broad and intense near band edge emissions were observed while the visible light emission was very weak. UV luminescence in all samples was red-shifted relative to the exciton transition in bulk ZnO and enhanced by decreased ZnO concentration due to higher degree of structural integrity and the lower aggregation degree of ZnO. Donor B dopant played the double roles of filling conduction bands to broaden band gap when its concentration was lower than 5 mol%, and emerging with conduction bands to narrow the gap when B dopant exceeded this value. (c) 2007 Elsevier B.V. All rights reserved.