447 resultados para CYCLE LASER-PULSE
Resumo:
Passive mode locking of a solid-state Nd:GdVO4 laser is demonstrated. The laser is mode locked by use of a semiconductor absorber mirror (SAM). A low Nd3+ doped Nd:GdVO4 crystal is used to mitigate the thermal lens effect of the laser crystal at a high pump power. The maximum average output power is up to 6.5 W, and the pulse duration is as short as 6.2 ps. The optic-to-optic conversion efficiency is 32.5% and the repetition rate is about 110 MHz.
Resumo:
In this work, a novel light source of tandem InGaAsP/InGaAsP multiple quantum well electroabsoption modulator( EAM ) monolithically integrated with distributed feedback laser is fabricated by ultra-low-pressure ( 22 x 10(2) Pa ) selective area growth metal-organic chemical vapor diposition technique. Superior device performances have been obtained, such as low threshold current of 19 mA, output light power of 4.5 mW, and over 20 dB extinction ratio at 5 V applied voltage when coupled into a single mode fiber. Over 10 GHz 3dB bandwidth in EAM part is developed with a driving voltage of 2 V. Using this sinusoidal voltage driven integrated device, 10 GHz repetition rate pulse with an actual width of 13.7 ps without any compression elements is obtained due to the gate operation effect of tandem EAMs.
Resumo:
Fourth-order spatial interference of entangled photon pairs generated in the process of spontaneous parametric down-conversion pumped by a femtosecond pulse laser has been performed for the first time. In theory, it takes into account the transverse correlation between the two photons and is used to calculate the dependence of the visibility of the interference pattern obtained in Young's double-slit experiment. In this experiment, a short focal length tens and two narrow band interference filters were adopted to eliminate the effects of the broadband pump laser and improve the visibility of the interference pattern under the condition of nearly collinear light and degenerate phase matching.
Resumo:
A novel device of tandem multiple quantum wells (MQWs) electroabsorption modulators (EAMs) monolithically integrated with DFB laser is fabricated by ultra-low-pressure (22 mbar) selective area guowth (SAG) MOCVD technique. Experimental results exhibit superior device characteristics with low threshold of 19 mX output light power of 4.5 mW and over 20 dB extinction ratio when coupled into a single mode Fiber. Moreover, over 10 GHz modulation bandwidth is developed with a driving voltage of 2 V. Using I this sinusoidal voltage driven integrated device, 10GHz repetition rate pulse with a width of 13.7 ps without any compression elements is obtained.
Resumo:
We present a broadly tunable active mode- locked. bre ring laser based on a semiconductor optical ampli. er ( SOA), with forward injection optical pulses. The laser can generate pulse sequence with pulsewidth about 12 ps and high output power up to 8.56dBm at 2.5 GHz stably. Incorporated with a wavelength- tunable optical bandpass. lter, the pulse laser can operate with a broad wavelength tunable span up to 37nm with almost constant pulsewidth. A detailed experimental analysis is also carried out to investigate the relationship between the power of the internal cavity and the pulsewidth of the output pulse sequence. The experimental con. guration of the pulse laser is very simple and easy to setup with no polarization- sensitive components.
Resumo:
An actively mode-locked fiber ring laser based on cross-gain modulation (XGM) in a semiconductor optical amplifier (SOA) is demonstrated to operate stably with a simple configuration. By forward injecting an easily-generated external pulse train, the mode-locked fiber laser can generate an optical-pulse sequence with pulsewidth about 6 ps and average output power about 7.9 mW. The output pulses show an ultra-low RMS jitter about 70.7 fs measured by a RF spectrum analyzer. The use of the proposed forward-injection configuration can realize the repetition-rate tunability from I to 15 GHz for the generated optical-pulse sequences. By employing a wavelength-tunable optical band-pass filter in the laser cavity, the operation wavelength of the designed SOA-based actively mode-locked fiber laser can be tuned continuously in a wide span between 1528 and 1565 nm. The parameters of external-injection optical pulses are studied experimentally to optimize the mode-locked fiber laser. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We present a novel system design that can generate the optimized wavelength-tunable optical pulse streams from an uncooled gain-switched Fabry-Perot semiconductor laser using an optical amplifier as external light source. The timing jitter of gain-switched laser has been reduced from about 3 ps to 600 fs and the pulse width has been optimized by using our system. The stability of the system was also experimentally investigated. Our results show that an uncooled gain-switched FP laser system can feasibly produce the stable optical pulse trains with pulse width of 18 ps at the repetition frequency of 5 GHz during 7 h continuous working. We respectively proved the system feasibility under 1 GHz, 2.5 GHz and 5 GHz operation. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
We design a low-timing-jitter, repetition-rate-tunable, stretched-pulse passively mode-locked fiber laser by using a nonlinear amplifying loop mirror (NALM), a semiconductor saturable absorber mirror (SESAM), and a tunable optical delay line in the laser configuration. Low-timing-jitter optical pulses are stably produced when a SESAM and a 0.16 m dispersion compensation fiber are employed in the laser cavity. By inserting a tunable optical delay line between NALM and SESAM, the variable repetition-rate operation of a self-starting, passively mode-locked fiber laser is successfully demonstrated over a range from 49.65 to 50.47 MHz. The experimental results show that the newly designed fiber laser can maintain the mode locking at the pumping power of 160 mW to stably generate periodic optical pulses with width less than 170 fs and timing jitter lower than 75 fs in the 1.55 mu m wavelength region, when the fundamental repetition rate of the laser is continuously tuned between 49.65 and 50.47 MHz. Moreover, this fiber laser has a feature of turn-key operation with high repeatability of its fundamental repetition rate in practice.