384 resultados para waveguide tapers
Resumo:
Improved methods of reduction of bend loss of silicon-on-insulator waveguides were simulated and analyzed by means of effective index method (EIM) and two dimensional beam propagation method (2D-BPM). The simulation results indicate that two different methods, one of which are introducing an offset at the junction of two waveguides and the other is etching groove at the outside of bend waveguide, can decrease bend loss. And the later one is more effective. Meanwhile, experiments validate them. By etching groove, the insertion loss of bend waveguide of R = 16mm, transverse displacement 70mum was decreased 5dB. And its bend loss was almost eliminated.
Resumo:
A novel 1.55 mum laser diode (LD) with monolithically integrated spot-size converter (SSC) is designed and fabricated using conventional photolithography and the chemical wet etching process. For the laser diode, a ridge double-core structure is employed. For the spot-size converter, a buried double-waveguide structure is incorporated. The laterally tapered active core is designed and optically combined with the thin passive core to control the size of the mode. The threshold current was measured to be 40 mA together with high slope efficiency of 0.35 W A(-1). The beam divergence angles in the horizontal and vertical directions were as small as 14.9degrees and 18.2degrees, respectively.
Resumo:
The fields in 3-dimensional tapered waveguides are unstable compared with the fields in the straight waveguides. In the case of waveguide-to-fiber coupling and fiber-to-waveguide coupling, a sequence of short straight waveguides has been modeled to approximate the 3-dimensional tapered waveguide; and the unstable incident and reflected fields, as well as their derivatives, were determined by the beam propagation method(BPM). Then free space radiation mode(FSRM) was employed to calculate the reflected and transmitted powers. Analysis results of the coupling of fiber with silicon-on-insulator(SOI) tapered rib waveguides showed the feasibility of the method.
Resumo:
A novel butt-joint coupling scheme is proposed to improve the coupling efficiency for the integration of a GalnAsP MQW distributed feedback (DFB) laser with an MQW electro-absorption modulator (EAM). The proposed method gives more than 90% coupling efficiency, being much higher than the 26% coupling efficiency of the common MQW-MQW coupling technique. The differential quantum efficiency of the MQW-bulk-MQW coupled device is also much higher than that of the MQW-MQW device, 0.106 mW/mA versus 0.02 mW/mA. The EAM-DFB devices fabricated by the proposed method exhibit a very high modulation efficiency (12 dB/V) from 0 to I V. By adopting a high-mesa ridge waveguide and buried polyimide, the capacitance of the modulator is reduced to about 0.28 pF. The experimental results demonstrate that the method can replace the conventional MQW-MQW coupling technique to fabricate high-quality integrated photonic devices. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Ridge-waveguide AlGaInAs/AlGaAs distributed feedback lasers with lattice-matched GaInP gratings were fabricated and their light-current characteristics, spectrum and far-field characteristics were measured. On the basis of our experimental results we analyze the effect of the electron stopper layer on light-current performance using the commercial laser simulation software PICS3D. The simulator is based on the self-consistent solution of drift diffusion equations, the Schrodinger equation, and the photon rate equation. The simulation results suggest that, with the use of a 80 nm-width p-doped Al0.6GaAs electron stopper layer, the slope efficiency can be increased and the threshold current can be reduced by more than 10 mA.
Resumo:
Equilateral-triangle-resonator (ETR) microlasers with an output waveguide connected to one of the vertices of the ETR are suitable to be a light source for photonic integrated circuits. InP-GaInAsP ETR lasers with side length from 10 to 30 pm and the output-waveguide width of 1 or 2 pm are fabricated using standard photolithography and inductively coupled-plasma etching techniques. Continuous-wave electrically injected 1520-nm ETR laser with 20-mu m sides is realized with the maximum output power 0.17 and 0.067 mW and the threshold current 34 and 43 mA at 290 K and 295 K, respectively.
Resumo:
We report on the realization and characterization of an ultracompact, low-loss, and broadband corner mirror based on photonic crystals (PCs). By modifying the boundary layers of the PC region, extra losses of 1.1 +/- 0.4 dB per corner mirror are achieved for transverse-electronic polarization for silicon-on-insulator ridge waveguides fabricated by electron beam lithography and inductively coupled plasma etching. Dimensions of the PC corner mirror are less than 7 x 7 mu m(2), which are only about one tenth of conventional waveguide corner mirrors.
Resumo:
For a four-port microracetrack channel drop filter, unexpected transmission characteristics due to strong dispersive coupling are demonstrated by the light tunneling between the input-output waveguides and the resonator, where a large dropping transmission at off-resonance wavelengths is observed by finite-difference time-domain simulation. It causes a severe decline of the extinction ratio and finesse. An appropriate decrease of the coupling strength is found to suppress the dispersive coupling and greately increase the extinction ratio and finesse, a decreased coupling strength can be realized by the application of an asymmetrical coupling waveguide structure. In addition, the profile of the coupling dispersion in the transmission spectra can be predicted based on a coupled mode theory analysis of an equivalent system consisting of two coupling straight waveguides. The effects of structure parameters on the transmission spectra obtained by this method agree well with the numerical results. It is useful to avoid the strong dispersive coupling region in the filter design. (c) 2007 Optical Society of America.
Resumo:
Equilateral-triangle-resonator (ETR) lasers with an output waveguide jointed at one vertex of the resonator are fabricated on (100) GaInAsP-InP wafers using photolithography and a two-step inductively coupled plasma (ICP) etching technique. Distinct peaks with the mode spacing of longitudinal mode intervals are observed in the luminescence spectra at room temperature. Furthermore, some minor peaks appear in the middle of the main peaks, which can be attributed to the first-order transverse modes as predicted in the theoretical results. CW directional lasing emissions are achieved for ETR lasers with side lengths ranging from 15 to 30 pm up to 200 K. The temperature dependences of the threshold current and lasing wavelength are measured for an ETR laser with the side length of 20 mu m from 80 to 200 K. The observed threshold current rapidly increases as temperature increases over 170 K.
Resumo:
We demonstrate 1.25-1.29 mu m metamorphic laser diodes grown on GaAs by molecular beam epitaxy (MBE) using an alloy-graded buffer layer (GBL). Use of Be in the GBL is effective to reduce surface/interface roughness and improves optical quality. The RMS surface roughness of the optimized metamorphic laser is only two atomic monolayers for 1 x 1 mu m(2). Cross-sectional transmission electron microscopy (TEM) images confirm that most dislocations are blocked in the GBL. Ridge waveguide lasers with 4 mu m wide ridge were fabricated and characterized. The average threshold current under the pulsed excitation is in 170-200 mA for a cavity length of 0.9-1.5 mm. This value can be further reduced to about 100 mA by high-reflectivity coating. Lasers can work in an ambient temperature up to at least 50 degrees C. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We present fabrication and experimental measurement of a series of photonic crystal waveguides. The complete devices consist of an injector taper down from 3 mu m into a triangular-lattice air-hole single-line-defect waveguide with lattice constant from 410nm to 470nm and normalized radius 0.31. We fabricate these devices on a siliconon-insulator substrate and characterize them using a tunable laser source over a wavelength range from 1510nm to 1640nm. A sharp attenuation at photonic crystal waveguide mode edge is observed for most structures. The edge of guided band is shifted about 30nm with the 10nm increase of the lattice constant. We obtain high-efficiency light propagation and broad flat spectrum response of the photonic crystal waveguides.
Resumo:
Coupling and packaging have become decisive factors in the final performance and cost of high-frequency optoelectronic devices. Here, we report the design and successful fabrication of a silicon bench that integrates a V-groove and high-frequency coplanar waveguide (CPW) on the same high-resistivity silicon wafer as an effective optoelectronic packaging solution.
Resumo:
Studies on InGaN multiple quantum well blue-violet laser diodes have been reported. Laser structures with long-period multiple quantum wells were grown by metal-organic chemical vapor deposition. Triple-axis X-ray diffraction (TAXRD) measurements show that the multiple quantum wells were high quality. Ridge waveguide laser diodes were fabricated with cleaved facet mirrors. The laser diodes lase at room temperature under a pulsed current. A threshold current density of 3.3 kA/cm(2) and a characteristic temperature To of 145 K were observed for the laser diode.
Resumo:
We report a numerical analysis of various types of disorder effects on self-collimated beam in two-dimensional photonic crystal. Finite-difference time-domain (FDTD) method is used to simulate the process by using a pulse propagation technique. The position disorders along the directions parallel and perpendicular to the incidence are considered. We show that random disorder along the perpendicular direction will have a lesser effect on the performance of the dispersion waveguides than those along the parallel direction. Furthermore, the self-collimation waveguide (SCW) has new characteristics when compared with the photonic crystal line defect waveguide. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
An edge emitting laser based on two-dimensional photonic crystal slabs is proposed. The device consists of a square lattice microcavity, which is composed of two structures with the same period but different radius of air-holes, and a waveguide. In the cavity, laser resonance in the inner structure benelits from not only the anomalous dispersion characteristic of the first band-edge at the M point in the first Brillouin-zone but also zero photon states in the outer structure. A line defect waveguide is introduced in the outer structure for extracting photons from the inner cavity. Three-dimensional finite-difference time-domain simulations apparently show the in-plane laser output from the waveguide. The microcavity has an effective mode volume of about 3.2(lambda/eta(slab))(3) for oscillation -mode and the quality factor of the device including line defect waveguide is estimated to be as high as 1300.