377 resultados para relativistic heavy-ion collisions
Resumo:
为探索碳离子束辐照对细胞中端粒酶活性的变化,利用兰州近代物理研究所重离子研究装置(Heavy ion research facility in lanzhou,HIRFL)产生的碳离子(31MeV/μ12C6+),以人肝细胞HL-7702,肝癌细胞SMMC-7721为实验对象,用不同剂量1Gy、2Gy、3Gy、4Gy的重离子分别对两种细胞进行照射,用多聚酶链式反应-银染端粒重复序列扩增法(PCR-telomeric repeat amplification protocol,TRAP-PCR)银染端粒重复序列扩增法检测不同剂量下细胞端粒酶活性的变化。结果显示,人肝细胞HL-7702自身没有端粒酶活性,经1Gy辐照后也没有端粒酶活性,在2和3Gy处出现端粒酶活性,4Gy处端粒酶活性又消失。肝癌细胞SMMC-7721在1~3Gy处随着剂量的增大端粒酶活性升高,在4Gy处又开始下降;在1~3Gy处随着时间的推移端粒酶活性随着时间而加强(p<0.05)。分析得知,重离子辐射可以诱导人肝细胞产生端粒酶活性,也可以改变肝癌细胞的端粒酶活性。端粒酶参与细胞受辐照后DNA单链损伤的修复;辐照后DNA双链断裂导致端粒酶活性减弱。本实验使重离子在辐照治疗中的优势得以体现。
Resumo:
CSR(cooling storage ring)按计划将于2005年底建成调束,届时从~(12)C到~(238)U的重离子将可以分别被加速到900和400MeV的能量。HIRFL(兰州重离子加速器Heavy Ion Research Facility in Lanzhou)将用作CSR的注入器。为了CSR的屏蔽设计,本文利用现有的实验数据计算了由于束流损失产生的中子及其能谱、角分布,同时也估算了屏蔽体外表面的中子剂量、环境中子剂量及天空返照中子剂量。在源项计算中使用了400MeV/u~(12)C+Cu反应的中子产额、能谱、角分布的实验数据。计算表明,CSR对环境剂量影响最大的是天空返照中子。
Resumo:
基于荷能离子与固体相互作用特点 ,提出了一种新的制备光致发光材料的方法——高能重离子辐照 .用这种方法研究了 Si O2 薄膜的光致发光特性 ,发现高能 84 Kr和 4 0 Ar离子辐照可在注碳Si O2 薄膜样品中产生强的蓝 -紫光发射带 ,掺杂碳增强了辐照样品的发光特性
Resumo:
Human hepatoma (SMMC-7721) and normal liver (L02) cells were irradiated with c-rays, 12C6+ and 36Ar18+ ion beams at the Heavy Ion Research Facility in Lanzhou (HIRFL). By using the Calyculin-A induced premature chromosome condensation technique, chromatid-type breaks and isochromatid-type breaks were scored separately. Tumor cells irradiated with heavy ions produced a majority of isochromatid break, while chromatid breaks were dominant when cells were exposed to c-rays. The relative biological effectiveness (RBE) for irradiation-induced chromatid breaks were 3.6 for L02 and 3.5 for SMMC-7721 cell lines at the LET peak of 96 keVlm 1 12C6+ ions, and 2.9 for both of the two cell lines of 512 keVlm 1 36Ar18+ ions. It suggested that the RBE of isochromatid-type breaks was pretty high when high-LET radiations were induced. Thus we concluded that the high production of isochromatid-type breaks, induced by the densely ionizing track structure, could be regarded as a signature of high-LET radiation exposure.
Resumo:
Recent experimental works devoted to the phenomena of mixing observed at metallic multilayers Ni/Si irradiated by swift heavy ions irradiations make it necessary to revisit the insensibility of crystalline Si under huge electronic excitations. Knowing that Ni is an insensitive material, such observed mixing would exist only if Si is a sensitive material. In order to extend the study of swift heavy ion effects to semiconductor materials, the experimental results obtained in bulk silicon have been analyzed within the framework of the inelastic thermal spike model. Provided the quenching of a boiling ( or vapor) phase is taken as the criterion of amorphization, the calculations with an electron-phonon coupling constant g(300 K) = 1.8 x 10(12) W/cm(3)/K and an electronic diffusivity D-e(300 K) = 80 cm(2)/s nicely reproduce the size of observed amorphous tracks as well as the electronic energy loss threshold value for their creation, assuming that they result from the quenching of the appearance of a boiling phase along the ion path. Using these parameters for Si in the case of a Ni/Si multilayer, the mixing observed experimentally can be well simulated by the inelastic thermal spike model extended to multilayers, assuming that this occurs in the molten phase created at the Ni interface by energy transfer from Si. (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
A theoretical study of the (p) over barp -> (p) over barn pi(+) reaction for antiproton beam energy from 1 to 4 GeV is made by including contributions from various known N* and Delta* resonances. It is found that for the beam energy around 1.5 GeV, the contribution of the Roper resonance N-(1440)* produced by the t-channel sigma exchange dominates over all other contributions. Since such a reaction can be studied in the forthcoming PANDA experiment at the GSI Facility of Antiproton and Ion Research (FAIR), the reaction will be realistically the cleanest place for studying the properties of the Roper resonance and the best place for looking for other "missing" N* resonances with large coupling to N sigma.
Resumo:
Target ionization and projectile charge changing were investigated for 20-500 keV/u Cq+, Oq++He (q=1-3) collisions. Double- to single-ionization ratios R-21 of helium associated with no projectile charge change (direct ionization), single-electron capture, and single-electron loss were measured. The cross-section ratio R-21 depends strongly on the collision velocity v, the projectile charge state q, and the outgoing reaction channel. Meanwhile, a model extended from our previous work [J. X. Shao, X. M. Chen, and B. W. Ding, Phys. Rev. A 75, 012701 (2007)] is presented to interpret the above-mentioned dependences. Good agreement is found between the model and the experimental data.
Resumo:
This study provides a useful biodosimetry protocol for radiation accidents that involve high doses of heavy particle radiation. Human peripheral blood lymphocytes (PBLs) were irradiated in vitro with high doses (5–50 Gy) of charged heavy-ion particles (carbon ions, at an effective linear-energy-transfer (LET) of 34.6 keV/ m), and were then stimulated to obtain dividing cells. PBLs were treated with 100nMcalyculin A to force chromosomes to condense prematurely, and chromosome spreads were obtained and stained with Giemsa. The G2 prematurely condensed chromosome (G2-PCC) index and the number of G2-PCC including fragments (G2-PCC-Fs) per cell for each radiation dose point were scored. Dose-effect relationships were obtained by plotting the G2-PCC indices or G2-PCC-Fs numbers against radiation doses. The G2-PCC index was greater than 5% up to doses of 15 Gy; even after a 30Gy radiation dose, the index was 1 to 2%. At doses higher than 30 Gy, however, the G2-PCC indices were close to zero. The number of G2-PCC-Fs increased steeply for radiation doses up to 30 Gy at a rate of 1.07 Gy−1. At doses higher than 30 Gy, the numbers of G2-PCC-Fs could not be accurately indexed because of the limited numbers of cells for analysis. Therefore, the number of G2-PCC-Fs could be used to estimate radiation doses up to 30 Gy. In addition, a G2-PCC index close to zero could be used as an indicator for radiation doses greater than 40 Gy.
Resumo:
The construction and commissioning of HIRFL-CSR were finished in 2007. From 2000 to 2005 the subsystem and key devices of CSR were successfully fabricated, such as magnet, power supply, UHV system, e-cooler, electric-static deflector with the septum of 0.1 mm, and the fast-pulse kicker with the rise time of 150 ns. After that the CSR commissioning activities were performed in 2006 and 2007, including the accumulation of those heavy ions of C, Ar, Kr and Xe by the combination of stripping injection (STI) or multiple multi-turn injection (MMI) and e-cooling with a hollow e-beam, wide energy-range synchrotron ramping by changing the RF harmonic-number at mid-energy, the beam stacking in the experimental ring CSRe, the RIBs mass-measurement with the isochronous-mode in CSRe by using the time-of-flight method, and the ion beam slow-extraction from CSRm.
Resumo:
Cooler Storage Ring (CSR) of Heavy Ion Research Facility in Lanzhou (HIRFL) consists of a main ring (CSRm) and an experimental ring (CSRe). Two particular C-type dipoles with embedded windings are used in the injection beam line of CSRm. They also act as the prototype dipoles of CSRe. The windings are designed to improve the field quality by their trimming current. The current impacts on field homogeneity and multipole components are investigated by a hall sensor and a long coil, respectively. The experiment shows that a field homogeneity of +/- 1.0 x 10(-3) can be reached by adjusting the trimming currents, though the multipole components change correspondingly. In our case, the quadrupole component is decreased to a low level with the octupole, decapole and 12-pole ones increased slightly when the trimming current is optimized.
Resumo:
The magnet design, fabrication, and measurement of HIRFL-CSR (Heavy Ion Research Facility in Lanzhou Cooling Storage Ring) are presented. All magnets will be laminated And welded with an armor-coated surface between two big endplates made of sticking glue 0.5 mm-thick sheets. The dipole of CSRm was chosen an H type with an air circle on the pole to improve the field uniformity. The dipole of CSRe was chosen the C type with an air circle and two air slots on the pole to improve the field homogeneity. Its reproducibility of magnet to magnet was adjusted with inserting small laminating pieces before demountable pole ends to reach less than +/- 2 x 10(-4) at optimized field level. CSRm quadrupoles diameter is 170 mm and has two different lengths, and its endplates were made with punching pieces after coating with epoxy glue, there is chamfered directly on the pole ends to reduce 12th-order contribution of field and without the demountable pole ends. CSRe main quadrupoles diameter is 240 mm and has two different lengths, and its endplates were also made with punching pieces coated with epoxy glue, there is also chamfered directly on the pole ends to reduce 12th-order contribution of field like CSRm.
Resumo:
The ovaries of Kun-Ming strain mice (3 weeks) were irradiated with different doses of C-12(6+) ion or Co-60 gamma-ray. Chromosomal aberrations were analyzed in metaphase II oocytes at 7 weeks after irradiation. The relative biological effectiveness (RBE) of C C-12(6+) ion was calculated with respect to Co-60 gamma-ray for the induction of chromosornal aberrations. The C-12(6+) ion and Co-60 gamma-ray dose-response relationships for chromosomal aberrations were plotted by linear quadratic models. The data showed that there was a dose-related increase in frequency of chromosomal aberrations in all the treated groups compared to controls. The RBE values for C-12(6+) ions relative to (CO)-C-60 gamma-rays were 2.49, 2.29, 1.57, 1.42 or 1.32 for the doses of 0.5, 1.0, 2.07 4.0 or 6.0 Gy, respectively. Moreover, a different distribution of the various types of aberrations has been found for C-12(6+) ion and Co-60 gamma-ray irradiations. The dose-response relationships for C-12(6+) ion and (CO)-C-60 gamma-ray exhibited positive correlations. The results from the present study may be helpful for assessing genetic damage following exposure of immature oocytes to ionizing radiation.
Resumo:
To meet the requirements of providing high-intensity heavy ion beams the direct plasma injection scheme (DPIS) was proposed by a RIKEN-CNS-TIT collaboration. In this scheme a radio frequency quadrupole (RFQ) was joined directly with the laser ion source (LIS) without a low-energy beam transport (LEBT) line. To find the best design of the RFQ that will have short length, high transmission efficiency and small emittance growth, beam dynamics designs with equipartitioning design strategy and with matched-only design strategy have been performed, and a comparison of their results has also been done. Impacts of the input beam parameters on transmission efficiency are presented, too. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
HIRFL was upgraded from beginning 2000. Besides of researches on nuclear physics, atomic physics, irradiative material and biology, the cancer therapy by heavy ion and hadron physics are being developing. The injector system of SFC+SSC can provide all ions from proton to uranium with higher intensity. The Cooling Storage Ring (CSR) has accelerated beams successful. The ions C-12(6+), Ar-36(18+), Xe-129(27+) have been accelerated up 1000MeV/u, 235MeV/u with about 10(9)similar to 10(8) ions per spill respectively. The beam momentum dispersion was measured from 4x10(-3) to 2x10(-4) after cooling by the electron cooler or similar to 4x10(-4) after accelerated to 1000MeV/u without cooling. In order to improve the nuclear structure and heavy isotope research in SFC+SSC energy domain, A Wien filter was added in front of RIBLL and gas was filled in first section of RIBLL; a new spectrometry SHANS has being installed. Presently, there are two starting version experimental setups at CSR.
Resumo:
To investigate the effects of pre-exposure of mouse testis to low-dose C-12(6+) ions on cytogenetics of spermatogonia and spermatocytes induced by subsequent high-dose irradiation. the testes of outbred Kun-Ming strain mice were irradiated with 0.05 Gy of C-12(6+) ions as the pre-exposure dose, and then irradiated with 2 Gy as challenging dose at 4 h after per-exposure. Poly(ADP-ribose) polymerase (PARPs) activity and PARP-1 protein expression were respectively measured by using the enzymatic and Western blot assays at 4 h after irradiation; chromosomal aberrations in spermatogonia and spermatocytes were analyzed by the air-drying method at 8 h after irradiation. The results showed that there was a significant increase in the frequency of chromosomal aberrations and significant reductions of PARP activity and PARP-1 expression level in the mouse testes irradiated with 2 Gy of C-12(6+) ions. However, pre-exposure of mouse testes to a low dose of C-12(6+) ions significantly increased PARPs activity and PARP-1 expression and alleviated the harmful effects induced by a subsequent high-dose irradiation. PARP activity inhibitor 3-aminobenzamide (3-AB) treatment blocked the effects of PARP-1 on cytogenetic adaptive response induced by low-dose C-12(6+) ion irradiation. The data suggest that pre-exposure of testes to a low dose of heavy ions can induce cytogenetic adaptive response to subsequent high-dose irradiation. The increase of PARP-1 protein induced by the low-dose ionizing irradiation may be involved in the mechanism of these observations. (C) 2008 Elsevier B.V. All rights reserved.