281 resultados para chrondrite matrix phases
Resumo:
The BaB4O7:Eu, Tb phosphors are first synthesized in air atmosphere. We investigate their luminescent properties, and find that europium(II) and europium(III) can coexist in the BaB4O7:Eu phosphor. We observed that the relative intensity of europium(II) is increased when terbium(III) is incorporated. The electron spin resonance (ESR) spectra are carried out. The intensity of ESR peaks corresponding to europium(II) is also increased when terbium(III) is increased, so the valency state of europium is influenced by terbium(III). We explain these phenomena by an electron transfer mechanism. (C) 1996 Academic Press, Inc.
Resumo:
Emissions of europium (II) and europium (III) have been observed in SrMgF4:Eu and SrMgF4:Eu,Ce phosphors which are synthesized in Ar flow, It is notable that the intensity of the ESR peaks corresponding to Eu2+ is increased when cerium ion is incorporated which can be explained by electron transfer mechanism.
Resumo:
In this paper, new topological indices, EA Sigma and EAmax, are introduced. They are based on the extended adjacency matrices of molecules, in which the influences of factors of heteroatoms and multiple bonds were considered. The results show that EA Sigm
Resumo:
The algebraic formulas of 1.5 and 2.5 rank are given for four space groups P2(1), Pn, Pna2(1), P2(1)2(1)2(1). It is better that the results of applying them to estimating general type of phases for four correspondent crystal structures. And a method of transforming algebraic formulas from 1.5(2.5) rank is proposed.
Resumo:
The algebraic formulas of 1.5 and 2.5 rank which can be applied to estimating +/- pi/2 type of phases for P2(1)2(1)2(1) space group were derived using the method of structure factor algebra. Both types of the formulas are satisfactory for two known crystal structures in estimating their +/- pi/2 type of phases.
Resumo:
The toughening effect of the separate phases of ethylene/propylene block copolymers and their blends was studied by scanning electron microscopy (SEM). The results obtained show that the interfacial adhesion between separate phases and the isotactic polypropene (iPP) matrix in ethylene/propylene block copolymers is strong at room temperature, but poor at low temperature; specimens exhibit tearing of separate phases during fracture at room temperature, but interfacial fracture between separate phases and the iPP matrix at low temperature. From the characteristics of fractographs of ethylene/propylene block copolymers and their blends, it could be concluded that the separate phases improve the toughness of specimens in several ways: they promote the plastic deformation of the iPP, and they can be deformed and fractured themselves during the fracture process. However, it was shown that the plastic deformation processes, such as multiple-crazing, shear yielding, etc. of the matrix are the dominant mechanisms of energy absorption in highly toughened ethylene/propylene block copolymers and their blends. The deformation and fracture of separate phases are only of secondary importance.
Resumo:
The aim of this study was to test the protective roles of superoxide dismutases (SODs), guaiacol peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) against oxidative damage and their activities in different phases of the dry down process in Reaumuria soongorica (Pall.) Maxim. leaves. Drought stress was imposed during 100 consecutive days and rewatering after 16, 72, and 100 days. The concentration of hydrogen peroxide (H2O2), malondialdehyde, and SODs activities were elevated significantly with progressing drought stress. POD and CAT activities increased markedly in the early phase of drought and decreased significantly with further drought stress continuation, and POD activity was unable to recover after rewatering. Ascorbate, reduced glutathione, APX, and GR activities declined in the initial stages of drought process, elevated significantly with further increasing water deficit progression and recovered after rewatering. These results indicate that: (1) iron SODs-removing superoxide anion is very effective during the whole drought stress; (2) CAT scavenges H2O2 in the early phase of drought and enzymes of ascorbate-glutathione cycle scavenge H2O2 in further increasing drought stress; and (3) POD does not contribute to protect against oxidative damage caused by H2O2 under drought stress.
Resumo:
The giant basal spicules of the siliceous sponges Monorhaphis chuni and Monorhaphis intermedia (Hexactinellida) represent the largest biosilica structures on earth (up to 3 m long). Here we describe the construction (lamellar organization) of these spicules and of the comitalia and highlight their organic matrix in order to understand their mechanical properties. The spicules display three distinct regions built of biosilica: (i) the outer lamellar zone (radius: >300 mu m), (ii) the bulky axial cylinder (radius: <75 mu m), and (iii) the central axial canal (diameter: <2 mu m) with its organic axial filament. The spicules are loosely covered with a collagen net which is regularly perforated by 7-10 mu m large holes; the net can be silicified. The silica layers forming the lamellar zone are approximate to 5 mu m thick; the central axial cylinder appears to be composed of almost solid silica which becomes porous after etching with hydrofluoric acid (HF). Dissolution of a complete spicule discloses its complex structure with distinct lamellae in the outer zone (lamellar coating) and a more resistant central part (axial barrel). Rapidly after the release of the organic coating from the lamellar zone the protein layers disintegrate to form irregular clumps/aggregates. In contrast, the proteinaceous axial barrel, hidden in the siliceous axial cylinder, is set up by rope-like filaments. Biochemical analysis revealed that the (dominant) molecule of the lamellar coating is a 27-kDa protein which displays catalytic, proteolytic activity. High resolution electron microscopic analysis showed that this protein is arranged within the lamellae and stabilizes these surfaces by palisade-like pillars. The mechanical behavior of the spicules was analyzed by a 3-point bending assay, coupled with scanning electron microscopy. The load-extension curve of the spicule shows a biphasic breakage/cracking pattern. The outer lamellar zone cracks in several distinct steps showing high resistance in concert with comparably low elasticity, while the axial cylinder breaks with high elasticity and lower stiffness. The complex bioorganic/inorganic hybrid composition and structure of the Monorhaphis spicules might provide the blueprint for the synthesis of bio-inspired material, with unusual mechanical properties (strength, stiffness) without losing the exceptional properties of optical transmission. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
According to the specific property of respective phases in copper ore, optimal extracting condition for, tour phases of copper with five infusion was examined. After a series of experiments, for example, different weight Of sample, artificial mixed single phases sample and repeated experiment, the extracting ratio constants foil all phases in different infusions were obtained. The mathematical model which is on the basis of the stable extracting constant is established. Based on the purpose-control genetic algorithms, we only need to determine the total copper in the sample in different infusions under the selected condition, then the value of respective phase could be calculated. The-relative standard deviation are (%) free oxidized copper phase:1.5, conjunction oxidized copper phase: 17.6,, secondary copper sulfide phase: 1.9, primary copper sulfide phase : 2.7,total copper: 0.8.
Resumo:
Matrix-bound phosphine (PH3), a new form of phosphorus, was found in sediment of Jiaozhou Bay in December 2001. Concentration and distribution of PH3 in different layers of sediment with different stations were analyzed. The results show that PH3 concentrations are various with different layers and different stations. PH3 concentrations in the bottom layer of sediment (20-30 cm) are usually higher than those in the surface layer (0-4 cm). The highest PH3 concentration in our investigation reaches 685 ng/kg (dry), which is much higher than those in terrestrial paddy soil, marsh and landfill that have been reported up to now. The correlation analysis indicates that there is no apparent correlation between the concentrations of PH3 and inorganic phosphorus in sediment. However, the correlation between the concentrations of phosphine and organic phosphorus in the bottom layer of sediment is remarkable (R-2=0.83). It is mainly considered that PH3 in sediment of Jiaozhou Bay is produced from the decomposition of organic phosphorus in the anaerobic condition, and so PH3 concentrations are related to organic phosphorus concentration and anaerobic environment in sediment. The discovery of PH3 in sediment will give people some new ideas on the mechanisms of phosphorus supplement and biogeochemical cycle in Jiaozhou Bay.
Resumo:
Matrix-bound phosphine (MBP) concentrations in surface sediments collected from 37 stations along the coast of China in 2006 are reported. MBP was found in all samples and the average concentration was 6.30 ng kg(-1) dry weight (dw). The distribution of MBP showed certain spatial variation characteristics with high MBP concentrations at stations near to the coast. The average concentrations of MBP in the northern Yellow Sea (NYS), the southern Yellow Sea (SYS), the northern area of East China Sea (NECS), the southern area of East China Sea (SECS), and South China Sea (SCS) were 5.57 +/- 3.78, 3.78 +/- 2.81, 5.27 +/- 3.07, 5.48 +/- 4.05 and 13.52 +/- 7.86 ng kg(-1) dw. respectively. The correlations between MBP and influencing factors, such as the sedimentary environmental characteristics (sediment type, the grain size, contents of phosphorous, organic matters and redox potential) and the aquatic environmental characteristics (temperature, salinity, depth and hydrodynamics) were studied. The results indicated that MBP was strongly influenced by various factors, such as total phosphorus (TP), organic phosphorus (OP), organic carbon (OC), the grain size and hydrodynamics, all of which not only offered reasonable interpretations for the distribution characteristics of MBP but also provided evidence to support the viewpoint that phosphine originated from OP decomposition. This work is the first comprehensive study of the distribution of MBP along the coast of China and its relationships with environmental factors which will lead to a better understanding of the phosphorus (P) biogeochemical cycle in the sea. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Sediment is commonly considered as a source of phosphine, which is a highly toxic and reactive atmospheric trace gas. This study aims to investigate the seasonal and spatial distribution of matrix-bound phosphine (MBP) and its relationship with the environment in the Changjiang River Estuary. A total of 43 surface sediments were collected in four seasons of 2006, and concentrations of MBP and relative environmental factors were analyzed. MBP ranged from 1.93 to 94.86 ng kg(-1) dry weight (dw) with an average concentration of 17.14 ng kg(-1) dw. The concentrations of MBP in the tipper estuary were, higher than those in the lower estuary, which could be attributed to greater pollutant inputs in the upper estuary. The concentrations of MBP also varied with season, with November > August > May > February. Significant correlations existed between MBP and total phosphorus (TP), organic phosphorus (OP), inorganic phosphorus (W), organic carbon (OC), total nitrogen (TN), the grain size, and redox potential (Eh), suggesting that these sedimentary environmental characteristics played an important role in controlling the MBP levels in the sediments. Notably, there were positive linear relationships between the concentrations of soluble reactive phosphorus (SRP), TP, and chlorophyll a (Chl a) in bottom water and MBP in sediments. These relationships might be very complicated and need further exploration. This work is the first comprehensive study of the seasonal and spatial distribution of MBP in sediments and its relationships with environmental factors in a typical estuary, and will lead to deeper understanding of the phosphorus (P) biogeochemical cycle. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The three-dimensional fluorescence spectrum was used to detect the changes in dissolved organic substances from the cultured Skeletonema costatum, Alexandrium tamarense, Alexandrium mimutum, Scrippsiella trochodea, Prorocentrum donghaiense and Prorocentrum micans. The result indicates that all of the microalgaes can produce FDOM in the growth courses. Diatom such as Skeletonema costatum can produce humic-like FDOM. However dinoflagellate can produce protein-like FDOM at exponential growth phase. When the algae grows into decadency phase, the intensity of humic-like and protein-like fluorescence augments rapidly, which may be due to a mass of FDOM realeased by the old or dead cell fragmentation and the degradation of bacteria by using non-FDOM. The fluorescent intensity of Alexandrium tamarense, Alexandrium mimutum, Prorocentrum donghaiense and Prorocentrum micans can reduce at anaphase of decadency phase because of the degradation of bacteria and light. The same genus of algae can produce similar FDOM, for example: Alexandrium tamarense, and Alexandrium mimutum, Prorocentrum donghaiense and Prorocentrum micans, but the positions of the fluorescence peaks are different.
Resumo:
The chlorophyll fluorescence in soybean leaves was observed by a portable fluorometer CF-1000 under field conditions. On clear days, F-0 increased while F, and F-v/F-m decreased gradually in the morning. At midday F-O reached its maximum while F-v and F-v/F-m reached their minimum. The reverse changes occurred in the afternoon. At dusk these parameters could return to levels near those at dawn. Following exposure to a strong sunlight for more than 3 h, the dark-recovery process displayed three phases: (1) slow increases in F-0, F-v and F-v/F-m within the first hour; (2) a faster decrease in F-0 and faster increases in F-v and F-v/F-m within subsequent two hours; (3) a slow decrease in F-0 and slow increases in F-v and F-v/F-m within the fourth hour. In comparison with darkness, weak irradiance had no stimulating effect on the recovery from photoinhibition. Hence the photoinhibition in soybean leaves is mainly the reflection of reversible inactivation of some photosystem 2 reaction centres, but not the result of D1 protein loss.