276 resultados para Transition écologique
Resumo:
Ln(2)Mo(3)O(12) and Ce2Mo3O12.25 are reduced by hydrogen yielding Mo4+ oxides of the formula Ln(2)Mo(3)O(9) (Ln = La, Ce, Pr, Nd, Sm, Gd and Dy). The new compound Ce2Mo3O9 has the same structure as other Ln(2)Mo(3)O(9) compounds. All of the products are single phase materials and crystallize in a tetragonal scheelite type structure with Mo2O6 clusters. The IR spectra of the Ln(2)Mo(3)O(9) oxides show two absorption bands. These compounds are black n-type semiconductors, and exhibit Curie-Weiss Law behavior from 100K to 250K. Temperature dependence of the electrical properties of these compounds were measured for the first time, and a semiconductor-metal transition was found at about 250 degrees C.
Resumo:
Based on Jeziorny theory, the kinetics of phase transition of poly(ester-imide) has been determined under non-isothermal condition by using differential scanning calorimetry (DSC). Avrami exponent n, kinetic parameters G(c) and rate constant Z(c) were derived and discussed.
Resumo:
The effects of metal ions and lanthanide complexes on the gel-to-liquid crystal phase transition temperature T-m of dipalmitoylphosphatidylethanolamine liposomes have been studied by differential scanning calorimetry (DSC) method. The results show that the addition of metal ions to the dipalmitoylphosphatidylethanolamine (DPPE) liposomes dispersions increases the main phase transition temperature T-m in the order of monovalent< divalent< trivalent cations. The enhancement of T-m is not large as increasing the lanthanide ions concentration. The enhancement of Pr3+ is larger than that of La3+. Remarkable differences were observed between La-citrate and La-lactate complexes at different pH solutions. At pH 7.0, La-citrate complex has no effect on the T-m, La-lactate complex, however, increases the T-m value, and the increase is larger than that of free lanthanide ions at the same concentration. The decrease of pH of complexes solutions lowers the phase transition temperature. We have preliminarily discussed the mechanism of the enhancements of lanthanide ions and the synergism of lanthanide ion and lactate ligand follow the ion induced dehydration of lipid and the potential effects of ion-lipid interaction.
Resumo:
It has been found that the interaction between the two transition metal Mn, Co ions on B-site and their Redox property an the important factors influencing the NO-selectivity in ammonia oxidation. The NO-selectivity is related to the redox ability of Mn3+
Resumo:
The solid-solid phase transition of [n-C11H23NH3]2ZnCl4 Complex have been studied by Raman spectroscopy. The results show that the occurence of the structural phase transitions mainly related to the change of packing structure and molecular conformation o
Resumo:
The glass transition behaviour, microphase separation morphology and crystallization of poly(vinyl alcohol)-g-poly(methyl methacrylate) graft copolymers (PVA-g-PMMA) were studied. A lamellar microphase separation morphology was formed, even for a copolyme
Resumo:
Diphenyl-o-tolylmethyl methacrylate (DPTMA) was synthesized and polymerized using initiators of organolithium complexes with (+) - (2S,3S) -dimethoxy-1,4-bis(dimethylamino) butane (DDB) and (-) -sparteine (Sp) as the chiral ligands. DDB was suitable for its complex effective to prepare optically active poly(diphenyl-o-tolylmethyl methacrylate) (PDPTMA) with one-handed helical conformation, whereas only low-molecular weight polymer was formed when Sp was used as ligand due to the repulsive hindrance between the triarylmethyl group and the ligand. A new mutarotation, propeller-propeller transition, was observed for PDPTMA from the optical rotation curves and CD spectra in THF solution. The equivalent period of PDPTMA was estimated to be 14 angstrom based on the x-ray diffraction. (C) 1993 John Wiley & Sons, Inc.
Resumo:
Diphenyl-o-methoxyphenylmethyl methacrylate was polymerized with several organolithium complexes of chiral ligand such as (-)-sparteine (Sp) and (S,S)-(+)-2,3-dimethoxy-1,4-bis(dimethylamino)butane (DDB). (+)-DDB was effective in preparing a polymer of high optical rotation, whereas (-)-Sp only gave oligomers with low optical rotation for the repulsive hindrance between the bulky ester group and the rigid ligand. The optical rotation of the polymer decreased rapidly to a constant value due to the propeller-propeller transition, which has been demonstrated by H-1 n.m.r. and circular dichroic spectra.
Resumo:
The novel NS-containing zirconacycle complexes Cp2ZrCl[SC(H)NR] (1a, R = C6H5; 1b, R = 2-C10H7; 1c, R= C-C6H11; 1d; R = n-C4H9) were obtained by insertion reactions of Cp2Zr(H)Cl with RNCS. 1(a-d) could react further with Cp2Zr(H)Cl to yield a sulphur-bridging compleX (Cp2ZrCl)2S (2) and a Schiff base RN=CH2. The crystal structure of la has been determined by X-ray analysis.
Resumo:
Reaction of 1,3-cyclohexadiene(tricarbonyl)iron (1) with ortho-substituted aryllithium reagents ArLi (Ar=o-CH3C6H4, o-CH3OC6H4, o-CF3C6H4) in ether at low temperature, and subsequent alkylation of the acylmetalates formed with Et3OBF4 in aqueous solution at 0-degrees-C or in CH2Cl2 at -60-degrees-C gave the 1,3-cyclohexadiene(dicarbonyl)[ethoxy(aryl)carbene]iron complexes (eta4-C6H8)(CO)2FeC(OC2H5)Ar (3, Ar = o-CH3C6H4; 4, Ar = o-CH3OC6H4), and the isomerized product (eta3-C6H8)(CO)2FeC(OC2H5)C6H4CF3-o (5), respectively, among which the structure of 3 has been established by an X-ray diffraction study. Complex 3 is monoclinic, space group P2(1) with a = 8.118(4), b = 7.367(4), c = 14.002(6) angstrom, beta = 104.09(3)-degrees, V = 812.2(6) angstrom3, Z = 2, D(c) = 1.39 g cm-3, R = 0.056, and R(w) = 0.062 for 976 observed reflections. Complexes 3 and 5 were converted into the chelated allyliron phosphine adducts(eta3-C6H8)(CO)2(PR31)FeC(OC2H5)Ar (6, Ar = o-CH3C6H4, R1 = Ph; 7, Ar = o-CH3C6H4, R1 = OPh; 9, Ar = o-CF3C6H4, R1 = Ph), by reaction with phosphines in petroleum ether at low temperatures.
Resumo:
The solid-solid phase transitions in the perovskite-type layer compound [n- C16H33NH3]2CoCl4 have been studied by infrared spectroscopy. A new phase transition at 340 K was found by comparison with differential scanning calorimetry results. A temperature dependence study of the infrared spectra provides evidence of the occurrence of structural phase transitions related to the dynamics of the alkylammonium ions and hydrogen bonds. The main transition at 374 K corresponds to the conformational order-disorder change in the chain, which probably couples with reorientational motions of the NH3 polar heads. GTG or GTG' defects appear in the high temperature disordered phase.
Resumo:
Mossbauer spectra of europium pentaphosphate are measured at various temperatures (126 to 200-degrees-C). Some Mossbauer parameters, such as isomer shift, electric quadrupole splitting, and asymmetry parameter of the EFG at Eu-151 nuclei are derived from the experimental spectra. The lattice parameters of the crystal are determined at several temperatures. The experimental results indicate that the crystal structure of europium pentaphosphate changes from monoclinic to orthorhombic. All of the temperature dependences of the Mossbauer parameters provide evidence of a phase transition of the crystal. The phase transition temperature can be determined from the curve of the asymmetry parameter of EFG versus temperature to 165-degrees-C.
Resumo:
The relationship between structures of complex fluorides and spectral structure of Eu(II) ion in complex fluorides (AB(m)F(n)) is investigated by means of pattern recognition methods, such as KNN, ALKNN, BAYES, LLM, SIMCA and PCA. A learning set consisting of 32 f-f transition emission host compounds and 31 d-f transition emission host compounds and a test set consisting of 27 host compounds were characterized by 12 crystal structural parameters. These parameters, i.e. features, were reduced from 12 to 6 by multiple criteria for the classification of these host compounds as f-f transition emission or d-f transition emission. A recognition rate from 79.4 to 96.8% and prediction capabilities from 85.2 to 92.6% were obtained. According to the above results, the spectral structures of Eu(II) ion in seven unknown host lattices were predicted.