450 resultados para Pt electrode
Resumo:
制备了炭载四苯基钴卟啉(CoTPP)和Pt(CoTPP-Pt/C)复合催化剂,研究了炭载四苯基铁卟啉对氧还原的电催活性。电化学研究发现,CoTPP-Pt/C催化剂对氧还原有很高的电催化活性。CoTPP-Pt/C催化剂对氧还原的极限电流密度比Pt/C催化剂高30%左右,但抗甲醇的能力未改善。
Resumo:
Equilibrium geometries, vibrational frequencies, and dissociation energies of the transition metal carbonyls MCO (M = Nb, Ta, Rh, Ir, Pd, Pt) were studied by use of diverse density functional methods B3LYP, BLYP, B3P86, B3PW91, BHLYP, BP86, and PBE1PBE. It was found that the ground electronic state is (6)Sigma(+) for NbCO and TaCO, (2)Sigma(+) for RhCO,(2)Delta for IrCO, and (1)Sigma(+) for PdCO and PtCO, in agreement with previous theoretical studies. The calculated properties are highly dependent on the functionals employed, in particular for the dissociation energy. For most of the molecules, the predicted bond distance is in agreement with experiments and previous theoretical results. BHLYP is the worst method in reproducing the experimental results compared with the other density functional methods for the title molecules.
Resumo:
A new setup to couple capillary electrophoresis (CE) with electrochemiluminescence (ECL) detection is described in which the electrical connection of CE is achieved through a porous section at a distance of 7 mm from the CE capillary outlet. Because the porous capillary wall allowed the CE current to pass through and there was no electric field gradient beyond that section, the influence of CE high-voltage field on the ECL procedure was eliminated. The porous section formed by etching the capillary with hydrofluoric acid after only one side of the circumference of 2-3 mm of polyimide coating of the capillary was removed, while keeping the polyimide coating on the other part to protect the capillary from HF etching makes the capillary joint much more robust since only a part of the circumference of it is etched. A standard three-electrode configuration was used in experiments with Pt wire as a counter electrode, Ag/AgCl as a reference electrode, and a 300-mum diameter Pt disk as a working electrode. Compared with CE-ECL conventional decoupler designs, the present setup with a porous joint has no added dead volume created.
Resumo:
In this article, an antibiotic, lincomycin was determined in the urine sample by microchip capillary electrophoresis (CE) with integrated indium tin oxide (ITO) working electrode based on electrochemiluminescence (ECL) detection. This microchip CE-ECL system can be used for the rapid analysis of lincomycin within 40 s. Under the optimized conditions, the linear range was obtained from 5 to 100 muM with correlation coefficient of 0.998. The limit of detection (LOD) of 3.1 muM was obtained for lincomycin in the standard solution. We also applied this method to analyzing lincomycin in the urine matrix. The limit of detection of 9.0 muM was obtained. This method can determine lincomycin in the urine sample without pretreatment, which demonstrated that it is a promising method of detection of lincomycin in clinical and pharmaceutical area.
Resumo:
Quasi-reversible and direct electrochemistry of cytochrome c (cyt. c) has been obtained at a novel electrochemical interface constructed by self-assembling gold nanoparticles (GNPs) onto a three-dimensional silica gel network, without polishing or any modification of the surface. A cleaned gold electrode was first immersed in a hydrolyzed sol of the precursor (3-mercaptopropyl)-trimethoxysilane to assemble three-dimensional silica gel, then the GNPs were chemisorbed onto the thiol groups of the sol-gel network and modified the kinetic barrier of this self-assembled silicate film. Cyclic voltammetry and AC impendance spectroscopy were performed to evaluate electrochemical properties of the as prepared interface. These nanoparticle inhibits the adsorption of cyt. c onto bare electrode and acts as a bridge of electron transfer between protein and electrode.
Resumo:
A novel method to fabricate a hydrogen peroxide sensor was developed by immobilizing horseradish peroxidase (HRP) on colloidal An modified ITO conductive glass support. The cleaned glass support was modified with (3-aminopropyl)trimethoxysilane (APTMS) first to yield an interface for the assembly of colloidal An. Then 15 nm colloidal Au particles were chemisorbed onto the amine groups of the APTMS. Finally, HRP was adsorbed onto the surface of the colloidal An. The immobilized HRP displayed excellent electrocatalytical response to the reduction of hydrogen peroxide. The performance and factors influencing the resulted biosensor were studied in detail. The resulted biosensor exhibited fast amperometric response (within 5 s) to H2O2. The detection limit of the biosensor was 8.0 mumol l(-1), and linear range was from 20.0 mumol l(-1) to 8.0 mmol l(-1). Furthermore, the resulted biosensor exhibited high sensitivity, good reproducibility, and long-term stability.
Resumo:
The deliberate tailoring of nanostructured metallic catalysts at the monolayer-level is an ongoing challenge and could lead to new electronic and catalytic properties, since surface-catalyzed reactions are extremely sensitive to the atomic-level details of the catalytic surface. In this article, we present a novel electrochemical strategy to nanoparticle-based catalyst design using the recently developed underpotential deposition (UPD) redox replacement technique. A single UPD Cu replacement with Pt2+ yielded a uniform Pt layer on colloid gold surfaces. The ultrathin (nominally monolayer-level) Pt coating of the novel nanostructured particles was confirmed by cyclic voltammetry and X-ray photoelectron spectra (XPS). The present results demonstrate that ultrathin Pt coating effects efficiently and behaves as the nanostructured monometallic Pt for electrocatalytic oxygen reduction, and also shows size-dependent, tunable electrocatalytic ability. The as-prepared ultrathin Pt-coated Au nanoparticle monolayer electrodes reduce O-2 predominantly by four electrons to H2O, as confirmed by the rotating ring-disk electrode (RRDE) technique.
Resumo:
A phosphopolyoxomolybdate (P2Mo18) doped polypyrrole (PPy) modified electrode was prepared in aqueous solution by a one-step method. During the polymerization of PPy, P2Mo18 acted as both catalyst and dopant. The electrochemical behavior of the PPy/P2Mo18 modified electrode before and after the overoxidation of PPy was investigated. Both of these showed a catalytic effect toward bromate. The PPy/P2Mo18 composite film was characterized by chronoamperometry, cyclic voltammetry, the rotating disk electrode technique, X-ray photoelectron spectroscopy and Raman spectroscopy.
Resumo:
In an attempt to increase the interface stability of carbon used in Li-ion batteries, a thin conducting polyaniline (PANI) film was fabricated on the surface of carbon by in situ chemical polymerization. The chemical and electrochemical properties of the composite material were characterized using X-ray diffraction, Raman spectroscopy, scanning electron microscope, cyclic voltammetry, and electrochemical impedance spectroscopy. It was confirmed that the PANI film has an obvious effect on the morphology and the electrochemical performance of carbon. The results could be attributed to the electronic and electrochemical activity of the conducting PANI films.
Resumo:
In 0.05 mol/L phosphate buffer solution (pH 7.0), carbon nanotubes modified electrode exhibits rapid response, strong catalytic activity with high stability toward the electrochemical oxidation of catechol. The electrochemical behavior of catechol on both the multi-walled and single-walled carbon nanotubes modified electrode was investigated. The experimental conditions, such as pH of the solution and scan rate were optimized. The currents (measured by constant potential amperometry) increase linearly with the concentrations of catechol in the range of 2.0 x 10(-5) - 1.2 x 10(-3) mol/L. Moreover, at the multi-walled carbon nanotubes modified electrode the electrochemical responses of catechol and ascorbic acid can be separated clearly.
Resumo:
The in-site functionalization of 4-aminothiophenol (4-ATP) self-assembled monolayer on gold electrode at physiological pH yields a redox active monolayer of 4'-mercapto-N-phenylquinone diimine (MNPD). The functionalized electrode exhibits excellent electrocatalytic responses towards dopamine (DA) and ascorbic acid (AA), reducing the overpotentials by about 0.22 V and 0.34 V, respectively, with greatly enhanced current responses. Due to its different catalytic activities toward DA and AA, the modified electrode resolves the overlapping voltammetric responses of DA and AA into two well-defined voltammetric peaks by differential pulse voltammetry (DPV), which can be used for the simultaneous determination of these species in a mixture. The catalytic peak current obtained from DPV was linearly related to DA and AA concentration in the ranges of 5.0 x 10-6 - 1.25 x 10-4 M and 8.0 x 10-6 - 1.3 x 10-4 M with correlation coefficient of 0.999 and 0.998, respectively. The detective limits (3sigma) for DA and AA were found to be 1.2 x 10-6 M and 2.4 x 10-6 M, respectively.
Resumo:
The multi-walled carbon nanotubes (MWNTs) modified glassy carbon electrode exhibited electrocatalytic activity to the reduction of oxygen in 0.1 M HAc-NaAc (pH 3.8) buffer solution. Further modification with cobalt porphyrin film on the MWNTs by adsorption, the resulted modified electrode showed more efficient catalytic activity to O-2 reduction. The reduction peak potential of O-2 is shifted much more positively to 0.12 V (vs. Ag/AgCl), and the peak current is increased greatly. Cyclic voltammetry (CV), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM), were used to characterize the material and the modified film on electrode surface. Electrochemical experiments gave the total number of electron transfer for oxygen reduction as about 3, which indicated a co-exist process of 2 electrons and 4 electrons for reduction of oxygen at this modified electrode. Meanwhile, the catalytic activities of the multilayer film (MVVNTs/CoTMPyP)(n) prepared by layer-by-layer method were investigated, and the results showed that the peak current of O-2 reduction increased and the peak potential shifted to a positive direction with the increase of layer numbers.
pH-dependent conformational changes of ferricytochrome c induced by electrode surface microstructure
Resumo:
pH-dependent processes of bovine heart ferricytochrome c have been investigated by electronic absorption and circular dichroism (CD) spectra at functionalized single-wall carbon 'nanotubes (SWNTs) modified glass carbon electrode (SWNTs/ GCE) using a long optical path thin layer cell. These methods enabled the pH-dependent conformational changes arising from the heme structure change to be monitored. The spectra obtained at functionalized SWNTs/GCE reflect electrode surface microstructure-dependent changes for pH-induced protein conformation, pK(a) of alkaline transition and structural microenvironment of the ferricytochrome c heme. pH-dependent conformational distribution curves of ferricytochrome c obtained by analysis of in situ CD spectra using singular value decomposition least square (SVDLS) method show that the functionalized SWNTs can retain native conformational stability of ferricytochrome c during alkaline transition.
Resumo:
The La0.85MgxNi4.5Co0.35Al0.15 (0.05less than or equal toxless than or equal to0.35) system compounds have been prepared by are melting method under Ar atmosphere. X-ray diffraction (XRD) analysis reveals that the as-prepared alloys have different lattice parameters and cell volumes. The electrochemical properties of these alloys have been studied through the charge-discharge recycle testing at different temperatures and discharge currents. It is found that the La0.85Mg0.25Ni4.5Co0.35Al0.(15) alloy electrode is capable of performing high-rate discharge. Moreover, it has very excellent electrochemical properties as negative electrode materials in Ni-MH battery at low temperature, even at -40degreesC.