327 resultados para Dts (Double-Tube-Socket)
Resumo:
Target ionization and projectile charge changing were investigated for 20-500 keV/u Cq+, Oq++He (q=1-3) collisions. Double- to single-ionization ratios R-21 of helium associated with no projectile charge change (direct ionization), single-electron capture, and single-electron loss were measured. The cross-section ratio R-21 depends strongly on the collision velocity v, the projectile charge state q, and the outgoing reaction channel. Meanwhile, a model extended from our previous work [J. X. Shao, X. M. Chen, and B. W. Ding, Phys. Rev. A 75, 012701 (2007)] is presented to interpret the above-mentioned dependences. Good agreement is found between the model and the experimental data.
Resumo:
Within the hadronic transport model IBUU04, we investigate the effect of density-dependent symmetry energy on double neutron/proton (n/p) ratio of free nucleons in heavy ion collisions by taking four isotopic Sn+Sn reaction systems. Especially the entrance-channel asymmetry and impact-parameter dependence of the effect of symmetry energy are discussed. It is found that in both central and semi-central collisions the sensitivity of the double n/p ratio to the density-dependent symmetry energy is more pronounced in neutron-richer systems. Our results also indicate clearly that the effect of symmetry energy is stronger in central collisions than that in semi-central collisions.
Resumo:
The double ionization of helium by electron impact for 106 eV incident energy was studied in a kinematically complete experiment by using a reaction microscope. The pattern of the angular correlation of the three emitted electrons was analyzed by selecting different values of the recoil ion longitudinal momentum. The Wannier predicted geometry appears when the recoil ion carries the full initial projectile momentum. It was found that at this low impact energy, the outgoing electrons still remember the initial-state collision information.
Resumo:
ZnO films doped with different contents of indium were prepared by radio frequency sputtering technique. The structural, optical and emission properties of the films were characterized at room temperature using XRD, XPS, UV-vis-NIR and PL techniques. Results showed that the indium was successfully incorporated into the c-axis preferred orientated ZnO films, and the In-doped ZnO films are of over 80% optical transparency in the visible range. Furthermore, a double peak of blue-violet emission with a constant energy interval (similar to 0.17 eV) was observed in the PL spectra of the samples with area ratio of indium chips to the Zn target larger than 2.0%. The blue peak comes from the electron transition from the Zn-i level to the top of the valence band and the violet peak from the In-Zn donor level to the V-Zn level, respectively.
Resumo:
We have performed an experiment on near threshold double ionization of helium by 106 eV electron impact with an improved reaction microscope. In this experiment the momenta of three particles after ionization were measured, and the information on correlation of emitted electrons was obtained. Detailed descriptions of the experimental setup and the methods of reconstruction of electron momentum were given. We focused on the analysis of momentum and energy distributions and the angular correlation of the emitted electrons. The experimental results were compared with Wannier's prediction, and it was found that the experimental results showed some characteristic features predicted by Wannier theory.
Resumo:
The Josephson equations for a Bose-Einstein Condensate gas trapped in a double-well potential are derived with the two-mode approximation by the Gross-Pitaevskii equation. The dynamical characteristics of the equations are obtained by the numerical phase diagrams. The nonlinear self-trapping effect appeared in the phase diagrams are emphatically discussed, and the condition EcN > 4E(J) is presented.
Resumo:
The multi-electron processes are investigated for 17.9-120keV/u C1+, 30-323 keV/u C2+, 120-438 keV/u C3+, 287-480keV/u C4+ incident on a helium target. The cross-section ratios of double electron (DE) process to the total of the single electron (SE) and the double electron process (i.e. SE+DE), the direct double electron (DDI) to the direct single ionization (DSI) as well as the contributions of DDI to DE and of TI to DE are measured using coincidence techniques. The energy and charge state dependences of the measured cross-section ratios are studied and discussed.
Resumo:
The double neutron-proton differential transverse flow taken from two reaction systems using different isotopes of the same element is studied at incident beam energies of 400 and 800 MeV/nucleon within the framework of an isospin- and momentum-dependent hadronic transport model IBUU04. The double differential flow is found to retain about the same sensitivity to the density dependence of the nuclear symmetry energy as the single differential flow in the more neutron-rich reaction. Because the double differential flow reduces significantly both the systematic errors and the influence of the Coulomb force, it is thus more effective probe for the high-density behavior of the nuclear symmetry energy.
Resumo:
Based on a transport model IBUU04, the double n/p ratio is studied. It is found that the double n/p ratio has almost the same sensitivity to the density dependence of nuclear symmetry energy as the single n/p ratio does. Because the double n/p ratio of nucleon emissions taken from two reaction systems can reduce systemic errors effectively, it is thus more useful for constraining the density-dependent symmetry energy further.
Resumo:
Employing the recoil ion momentum spectroscopy we investigate the collision between He2+ and argon atoms. By measuring the recoil longitudinal momentum the energy losses of projectile are deduced for capture reaction channels. It is found that in most cases for single- and double-electron capture, the inner electron in the target atom is removed, the recoil ion is in singly or multiply excited states (hollow ion is formed), which indicates that electron correlation plays an important role in the process. The captured electrons prefer the ground states of the projectile. It is experimentally demonstrated that the average energy losses are directly related to charge transfer and electronic configuration.
Resumo:
Based on the isospin- and momentum-dependent hadronic transport model IBUU04, effects of the nuclear symmetry energy on the single and double pi(-)/pi(+) ratios in central reactions of Sn-132+Sn-124 and Sn-112+Sn-112 at a beam energy of 400 MeV/nucleon are studied. It is found that around the Coulomb peak of the single pi(-)/pi(+) ratio the double pi(-)/pi(+) ratio taken from the two isotopic reactions retains about the same sensitivity to the density dependence of nuclear symmetry energy. Because the double pi(-)/pi(+) ratio can significantly reduce the systematic errors, it is thus a more effective probe for the high-density behavior of the nuclear symmetry energy.
Resumo:
The double neutron/proton ratio of nucleon emissions taken from two reaction systems using four isotopes of the same element, namely, the neutron/proton ratio in the neutron-rich system over that in the more symmetric system, has the advantage of reducing systematically the influence of the Coulomb force and the normally poor efficiencies of detecting low energy neutrons. The double ratio thus suffers less systematic errors. Within the IBUU04 transport model the double neutron/proton ratio is shown to have about the same sensitivity to the density dependence of nuclear symmetry energy as the single neutron/proton ratio in the neutron-rich system involved. The double neutron/proton ratio is therefore more useful for further constraining the symmetry energy of neutron-rich matter.
Resumo:
硅微条探测器通过微电子工艺制作,易因沾污导致性能下降甚至失效;裸露的键合引线,也易因机械力形成隐性或显性失效。对上述现象的研究可用于修复、维护探测器并在设计和工艺流程中改进其性能。本文通过光学、电气手段分析其结构和制作工艺流程,根据沾污性质在不同条件下清洗探测器,中测后根据芯片图形、封装方式和电气要求修复探测器,最后采用同位素α能谱测试修复效果。对一块沾污后失效(无法加载偏压)的硅微条清洗后在大气环境,N面接地,P面加载负偏压条件下进行了测试,结果显示:170 V全耗尽,平均漏电流2.94μA,5.486 MeV的α峰能量分辨率约1.28%。失效键合所在条的另一面各条能谱观测到假峰,键合修复后消除。因沾污失效的硅微条探测器经过合适的清洗、修复,部分可以恢复性能,但清洗对表面和结构有损伤,须谨慎。另外,键合失效后,因信号不能引出导致的电荷积累会通过电容效应影响其它灵敏区。文章提示,探测器应存放于洁净,恒温,低湿度,避光,避强电磁干扰的环境,以提高能量和位置分辨率,并增加工作稳定性,延长使用寿命。
Resumo:
With an effective Lagrangian approach, we analyze several NN -> NN pi pi channels by including various resonances with mass up to 1.72 GeV. For the channels with the pion pair of isospin zero, we confirm the dominance of N*(1440) -> N sigma in the near-threshold region. At higher energies and for channels with the final pion pair of isospin one, we find large contributions from N*(1440) -> Delta pi, double-Delta, Delta(1600) -> N*(1440)pi, Delta(1600) -> Delta pi and Delta(1620) -> Delta pi. There are also sizable contributions from Delta -> Delta pi, Delta -> N pi, N -> Delta pi, and nucleon pole at energies close to the threshold. We give a good reproduction to the total cross sections up to beam energies of 2.2 GeV except for the pp -> pp pi(0)pi(0) channel at energies around 1.1 GeV and our results agree with the existing data of differential cross sections of pp -> pp pi(+)p pi(-), pp -> nn pi(+)pi(+), and pp -> pp pi(0)pi(0) which are measured at CELSIUS and COSY.