324 resultados para DIRECT NUMERICAL-SIMULATION


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The bonding of glass wafer to aluminum foils in multi-layer assemblies was made by the common anodic bonding process. The bonding was performed at temperatures in the range 350-450 degrees C and with an applied voltage in the range 400-700 V under a pressure of 0.05 MPa. Residual stress and deformation in samples of two-layer (aluminum/glass) and three-layer (glass/aluminum/glass) were analyzed by nonlinear finite element simulation software MARC. The stress and strain varying with cooling time were obtained. The analyzed results show that deformation of the three-layer sample is significantly smaller than that of the two-layer sample, because of the symmetric structure of the three-layer sample. This has an important advantage in MEMS fabrication. The maximum equivalent stresses locate in the transition layer in both samples, which will become weakness in bonded sample.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A high-order shock-fitting finite difference scheme is studied and used to do direction numerical simulation (DNS) of hypersonic unsteady flow over a blunt cone with fast acoustic waves in the free stream, and the receptivity problem in the blunt cone hypersonic boundary layers is studied. The results show that the acoustic waves are the strongest disturbance in the blunt cone hypersonic boundary layers. The wave modes of disturbance in the blunt cone boundary layers are first, second, and third modes which are generated and propagated downstream along the wall. The results also show that as the frequency decreases, the amplitudes of wave modes of disturbance increase, but there is a critical value. When frequency is over the critial value, the amplitudes decrease. Because of the discontinuity of curvature along the blunt cone body, the maximum amplitudes as a function of frequencies are not monotone.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we present a numerical study on the thermocapillary migration of drops. The Navier-Stokes equations coupled with the energy conservation equation are solved by the finite-difference front-tracking scheme. The axisymmetric model is adopted in Our simulations, and the drops are assumed to be perfectly spherical and nondeformable. The benchmark simulation starts from the classical initial condition with a uniform temperature gradient. The detailed discussions and physical explanations of migration phenomena are presented for the different values of (1) the Marangoni numbers and Reynolds numbers of continuous phases and drops and (2) the ratios of drop densities and specific heats to those of continuous phases. It is found that fairly large Marangoni numbers may lead to fluctuations in drop velocities at the beginning part of simulations. Finally, we also discuss the influence of initial conditions on the thermocapillary migrations. (C) 2008 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Numerical simulations were conducted to study thermocapillary flows in short half-zone liquid bridges of molten tin with Prandtl number Pr = 0.009, under ramped temperature difference. The spatio-temporal structures in the thermocapillary flows in short half-zone liquid bridges with aspect ratios As = 0.6, 0.8, and 1.0 were investigated. The first critical Marangoni numbers were compared with those predicted by linear stability analyses (LSA). The second critical Marangoni numbers for As = 0.6 and 0.8 were found to be larger than that for As = 1.0. The time evolutions of the thermocapillary flows exhibited unusual features such as a change in the azimuthal wave number during the three-dimensional stationary (non-oscillating) flow regime, a change in the oscillation mode during the three-dimensional oscillatory flow regime, and the decreasing and then increasing of amplitudes in a single oscillation mode. The effects of the ramping rate of the temperature difference on the flow modes and critical conditions were studied as well. In this paper, the experimental observability of the critical conditions was also discussed. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Poly(dimethylsiloxane) (PDMS) has been widely used in lab-on-a-chip and micro- total analysis systems (mu-TAS), thus wetting and electrowetting behaviors of PDMS are of great importance in these devices. PDMS is a kind of soft polymer material, so the elastic deformation of PDMS membrane by a droplet cannot be neglected due to the vertical component of the interfacial tension between the liquid and vapor, and this vertical component of liquid-vapor surface tension is also balanced by the stress distribution within the PDMS membrane. Such elastic deformation and stress distribution not only affect the exact measurement of contact angle, but also have influence on the micro-fluidic behavior of the devices. Using ANSYS code, we simulated numerically the elastic deformation and stress distribution of PDMS membrane on a rigid substrate due to the liquid-vapor surface tension. It is found that the vertical elastic deformation of the PDMS membrane is on the order of several tens of nanometers due to the application of a droplet with a diameter of 2.31 mm, which is no longer negligible for lab-on-a-chip and mu-TAS. The vertical elastic deformation increases with the thickness of the PDMS membrane, and there exists a saturated membrane thickness, regarded as a semi-infinite membrane thickness, and the vertical elastic deformation reaches a limiting value when the membrane thickness is equal to or thicker than such saturated thickness. (C) Koninklijke Brill NV, Leiden, 2008.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The existing three widely used pull-in theoretical models (i.e., one-dimensional lumped model, linear supposition model and planar model) are compared with the nonlinear beam mode in this paper by considering both cantilever and fixed-fixed type micro and nano-switches. It is found that the error of the pull-in parameters between one-dimensional lumped model and the nonlinear beam model is large because the denominator of the electrostatic force is minimal when the electrostatic force is computed at the maximum deflection along the beam. Since both the linear superposition model and the slender planar model consider the variation of electrostatic force with the beam's deflection, these two models not only are of the same type but also own little error of the pull-in parameters with the nonlinear beam model, the error brought by these two models attributes to that the boundary conditions are not completely satisfied when computing the numerical integration of the deflection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Results from a space experiment on bubble thermocapillary migration conducted on board the Chinese 22nd recoverable satellite were presented. Considering the temperature field in the cell was disturbed by the accumulated bubbles, the temperature gradient was corrected firstly with the help of the temperature measurement data at six points and numerical simulation. Marangoni number (Ma) of single bubble migrating in the space experiment ranged from 98.04 to 9288, exceeding that in the previous experiment data. The experiment data including the track and the velocity of two bubble thermocapillary migration showed that a smaller bubble would move slower as it was passed by a larger one, and the smaller one would even rest in a short time when the size ratio was large enough.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, the thermocapillary motion problem of drops is investigated using the axisymmetric model. The front-tracking method is employed to capture the drop interface. We find that the migration velocity of the drop is greatly influenced by the temperature field in the drop when Ma is fairly large (>100), which leads to an increase-decrease migration velocity at the beginning of our simulations. (C) 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Based on similarity analyses, a series of experiments have been conducted with a newly established hydro-elastic facility to investigate the transverse vortex-induced vibrations (VIVs) of a submarine pipeline near an erodible sandy seabed under the influence of ocean currents. Typical characteristics of coupling processes between pipe vibration and soil scour in the currents have been summarized for Case 1: pipe is laid above seabed and Case 11: pipe is partially embedded in seabed on the basis of the experimental observations. Pipe vibration and the corresponding local scour are usually two coupled physical processes leading to an equilibrium state. The influence of initial gap-to-diameter ratio (e(0)/D) on the interaction between pipe vibration and local scour has been studied. Experimental results show that the critical values of V-r for the initiation of VIVs of the pipe near an erodible sand bed get bigger with decreasing initial gap-to-diameter ratio within the examined range of e(0)/D (-0.25 < e(0)/D < 0.75). The comparison of the pipe vibrations near an erodible soil with those near a rigid boundary and under wall-free conditions indicates that the vibration amplitudes of the pipe near an erodible sand bed are close to the curve fit under wall-free conditions; nevertheless, for the same stability parameter, the maximum amplitudes for the VIV coupled with local scour increase with the increase of initial gap-to-diameter ratio. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Concrete is heterogeneous and usually described as a three-phase material, where matrix, aggregate and interface are distinguished. To take this heterogeneity into consideration, the Generalized Beam (GB) lattice model is adopted. The GB lattice model is much more computationally efficient than the beam lattice model. Numerical procedures of both quasi-static method and dynamic method are developed to simulate fracture processes in uniaxial tensile tests conducted on a concrete panel. Cases of different loading rates are compared with the quasi-static case. It is found that the inertia effect due to load increasing becomes less important and can be ignored with the loading rate decreasing, but the inertia effect due to unstable crack propagation remains considerable no matter how low the loading rate is. Therefore, an unrealistic result will be obtained if a fracture process including unstable cracking is simulated by the quasi-static procedure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fracture owing to the coalescence of numerous microcracks can be described by a simple statistical model, where a coalescence event stochastically occurs as the number density of nucleated microcracks increases. Both numerical simulation and statistical analysis reveal that a microcrack coalescence process may display avalanche behavior and that the final failure is catastrophic. The cumulative distribution of coalescence events in the vicinity of critical fracture follows a power law and the fracture profile has self-affine fractal characteristic. Some macromechanical quantities may be traced back and extracted from the mesoscopic process based on the statistical analysis of coalescence events.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Response number R-n(n), proposed in [3, 4], is an important independent dimensionless number for the dynamic response of structures [2]. In this paper, the response number is applied to the dynamic plastic response of the well-known Parkes' problem, i.e., beams struck by concentrated mass.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

For simulating multi-scale complex flow fields it should be noted that all the physical quantities we are interested in must be simulated well. With limitation of the computer resources it is preferred to use high order accurate difference schemes. Because of their high accuracy and small stencil of grid points computational fluid dynamics (CFD) workers pay more attention to compact schemes recently. For simulating the complex flow fields the treatment of boundary conditions at the far field boundary points and near far field boundary points is very important. According to authors' experience and published results some aspects of boundary condition treatment for far field boundary are presented, and the emphasis is on treatment of boundary conditions for the upwind compact schemes. The consistent treatment of boundary conditions at the near boundary points is also discussed. At the end of the paper are given some numerical examples. The computed results with presented method are satisfactory.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a systematical numerical study of the effects of adiabatic exponent gamma on Richtmyer-Meshkov instability (RMI) driven by cylindrical shock waves, based on the gamma model for the multi-component problems and numerical simulation with high-order and high-resolution method for compressible Euler equations. The results show that the RMI of different gamma across the interface exhibits different evolution features with the case of single gamma. Moreover, the large gamma can hold back the development of nonlinear structures, such as spikes and bubbles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The water-heat transfer process between land and atmosphere in Haibei alpine meadow area has been systematically observed. A multi-layer coupling model for land-atmosphere interaction was presented with special attention paid to the moisture transfer in leaf stomata under unsaturated condition. A profound investigation on the physical process of turbulent transfer inside the vegetation has been performed with a revised formula of water absorption for root system. The present model facilitates the study of vertically distributed physical variables in detail. Numerical simulation was conducted according to the transfer process of Kinesia humility meadow in the area of Haibei Alpine Meadow Ecosystem Station, CAS. The calculated results agree well with observation.