265 resultados para Cong bu


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A perovskite-type oxide of Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCFO) with mixed electronic and oxygen ionic conductivity at high temperatures was used as an oxygen-permeable membrane. A tubular membrane of BSCFO made by extrusion method has been used in the membrane reactor to exclusively transport oxygen for the partial oxidation of ethane (POE) to syngas with catalyst of LiLaNiO/gamma-Al2O3 at temperatures of 800-900 degreesC. After only 30 min POE reaction in the membrane reactor, the oxygen permeation flux reached at 8.2 ml cm(-2) min(-1). After that, the oxygen permeation flux increased slowly and it took 12 h to reach at 11.0 ml cm(-2) min(-1). SEM and EDS analysis showed that Sr and Ba segregations occurred on the used membrane surface exposed to air while Co slightly enriched on the membrane surface exposed to ethane. The oxygen permeation flux increased with increasing of concentration of C2H6, which was attributed to increasing of the driving force resulting from the more reducing conditions produced with an increase of concentration of C2H6 in the feed gas. The tubular membrane reactor was successfully operated for POE reaction at 875 degreesC for more than 100 h without failure, with ethane conversion of similar to 100%, CO selectivity of >91% and oxygen permeation fluxes of 10-11 ml cm(-2) min(-1). (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Novel mixed conducting oxides, B-site Bi-doped perovskites were exploited and synthesized. Cubic perovskite structures were formed for BaBi0.2COyFe0.8-yO3-delta (y less than or equal to 0.4) and BaBixCo0.2Fe0.8-xP3-delta (x=0.1-0.5) The materials exhibited considerable high oxygen permeability at high temperature. The oxygen permeation flux of BaBi0.2Co0.35Fe0.45O3-delta membrane reached about 0.77 x 10(-6) mol/cm(2) s under an air/helium oxygen partial pressure gradient at 900 degrees C, which was much higher than that of other bismuth-contained mixed conducting membranes. The permeation fluxes of the materials increased with the increase of cobalt content, but no apparent simple relationship was found with the bismuth content. The materials also demonstrated excellent reversibility of oxygen adsorption and desorption. Stable time-related oxygen permeation fluxes were found for BaBi0.2CO0.35Fe0.45O3-delta and BaBi0.3Co0.2Fe0.5O3-delta a membranes at 875 degrees C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La-0.8Sr(0).2CoO(3) (LSCO) oxide powder was prepared using the adsorption properties of cellulose. The preparation process was studied by XRD, FTIR, TG-DTA and CO2-TPD techniques. The results of XRD, IR and TG-DTA testified that cellulose could successfully reserve the homogeneity of the solution system to the solid precursor. During the early stage of pyrolysis, cellulose was partially oxidized, and some COO- groups appeared in its texture, which were then complexed with the adsorbed metal ions, and effectively suppressed the aggregation of metal ions. Formation of a pure perovskite and the properties of the powder resulted were found to be significantly influenced by the cellulose to metal nitrate ratio. Also the properties of the resulting powder were greatly influenced by the calcination conditions. If the produced carbon dioxide could not be eluted in time, carbonate would be formed in the bulk. Hence, a high calcination temperature (> 800 degreesC) was needed to acquire a pure phase LSCO. At optimized conditions, nano-crystal LSCO could be obtained at as low as 500 degreesC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This payer presents a concrete theoretical treatment which can be used for transforming the laser-induced fluorescence (LIF) intensity into the population and alignment parameters of a symmetric top molecule, The molecular population and alignment are described by molecular state multipoles. The results are presented in a general excitation-detection geometry and then specialized in some special geometries. The problem how to extract the initial molecular state multipoles from the rotationally resolved LIF intensity is discussed in detail. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

General expressions used for transforming raw laser-induced fluorescence (LIF) intensity into the population and alignment parameters of a symmetric top molecule are derived by employing the density matrix approach. The molecular population and alignment are described by molecular state multipoles. The results are presented for a general excitation-detection geometry and then applied to some special geometries. In general cases, the LIF intensity is a complex function of the initial molecular state multipoles, the dynamic factors and the excitation-detection geometrical factors. It contains a population and 14 alignment multipoles. How to extract all initial state multipoles from the rotationally unresolved emission LIF intensity is discussed in detail.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

General expressions used for extracting the orientation and alignment parameters of a symmetric top molecule from laser-induced fluorescence (LIF) intensity are derived by employing the density matrix approach. The molecular orientation and alignment are described by molecular state multipoles. Excitation and detection are circularly and linearly polarized lights, respectively. In general cases, the LIF intensity is a complex function of the initial molecular state multipoles, the dynamic factors and the excitation-detection geometrical factors. It contains a population, ten orientation and fourteen alignment multipoles. The problem of how to extract the initial molecular state multipoles from the resolved LIF intensity is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Expressions used for extracting the population and alignment parameters of a symmetric top molecule from (n + 1) laser-induced fluorescence (LIF) are derived by employing the tensor density matrix method. The molecular population and alignment are described by molecular state multipoles. The LIF intensity is a complex function of the initial molecular state multipoles, the dynamic factors, and the excitation-detection geometrical factors. The problem of how to extract the initial molecular state multipoles from (2 + 1) LIF, as an example, is discussed in detail. (C) 2000 American Institute of Physics. [S0021-9606(00)30744-9].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A dense Ba0.5Sr0.5Co0.8Fe0.2O3-delta membrane tube was prepared by the extruding method. Furthermore, a membrane reactor with this tubular membrane was successfully applied to partial oxidation of methane (POM) reaction, in which the separation of oxygen from air and the partial oxidation of methane are integrated in one process. At 875degreesC, 94% of methane conversion, 98% of CO selectivity, 95% of H-2 selectivity, and as high as 8.8 mL/(min (.) cm(2)) of oxygen flux were obtained. In POM reaction condition. the membrane tube shows a very good stability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An oxygen permeable mixed ion and electron conducting membrane (OPMIECM) was used as an oxygen transfer medium as well as a catalyst for the oxidative dehydrogenation of ethane to produce ethylene. O2- species transported through the membrane reacted with ethane to produce ethylene before it recombined to gaseous O-2, so that the deep oxidation of the products was greatly suppressed. As a result, 80% selectivity of ethylene at 84% ethane conversion was achieved, whereas 53.7% ethylene selectivity was obtained using a conventional fixed-bed reactor under the same reaction conditions with the same catalyst at 800 degreesC. A 100 h continuous operation of this process was carried out and the result indicates the feasibility for practical applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An oxygen permeable membrane based on Ba0.5Sr0.5Co0.8-Fe0.2O3-delta is used to supply lattice oxide continuously for oxidative dehydrogenation of ethane to ethylene with selectivity as high as 90% at 650degreesC.